Spaces:
Build error
Build error
| using json = nlohmann::ordered_json; | |
| common_arg & common_arg::set_examples(std::initializer_list<enum llama_example> examples) { | |
| this->examples = std::move(examples); | |
| return *this; | |
| } | |
| common_arg & common_arg::set_excludes(std::initializer_list<enum llama_example> excludes) { | |
| this->excludes = std::move(excludes); | |
| return *this; | |
| } | |
| common_arg & common_arg::set_env(const char * env) { | |
| help = help + "\n(env: " + env + ")"; | |
| this->env = env; | |
| return *this; | |
| } | |
| common_arg & common_arg::set_sparam() { | |
| is_sparam = true; | |
| return *this; | |
| } | |
| bool common_arg::in_example(enum llama_example ex) { | |
| return examples.find(ex) != examples.end(); | |
| } | |
| bool common_arg::is_exclude(enum llama_example ex) { | |
| return excludes.find(ex) != excludes.end(); | |
| } | |
| bool common_arg::get_value_from_env(std::string & output) { | |
| if (env == nullptr) return false; | |
| char * value = std::getenv(env); | |
| if (value) { | |
| output = value; | |
| return true; | |
| } | |
| return false; | |
| } | |
| bool common_arg::has_value_from_env() { | |
| return env != nullptr && std::getenv(env); | |
| } | |
| static std::vector<std::string> break_str_into_lines(std::string input, size_t max_char_per_line) { | |
| std::vector<std::string> result; | |
| std::istringstream iss(input); | |
| std::string line; | |
| auto add_line = [&](const std::string& l) { | |
| if (l.length() <= max_char_per_line) { | |
| result.push_back(l); | |
| } else { | |
| std::istringstream line_stream(l); | |
| std::string word, current_line; | |
| while (line_stream >> word) { | |
| if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) { | |
| if (!current_line.empty()) result.push_back(current_line); | |
| current_line = word; | |
| } else { | |
| current_line += (!current_line.empty() ? " " : "") + word; | |
| } | |
| } | |
| if (!current_line.empty()) result.push_back(current_line); | |
| } | |
| }; | |
| while (std::getline(iss, line)) { | |
| add_line(line); | |
| } | |
| return result; | |
| } | |
| std::string common_arg::to_string() { | |
| // params for printing to console | |
| const static int n_leading_spaces = 40; | |
| const static int n_char_per_line_help = 70; // TODO: detect this based on current console | |
| std::string leading_spaces(n_leading_spaces, ' '); | |
| std::ostringstream ss; | |
| for (const auto arg : args) { | |
| if (arg == args.front()) { | |
| if (args.size() == 1) { | |
| ss << arg; | |
| } else { | |
| // first arg is usually abbreviation, we need padding to make it more beautiful | |
| auto tmp = std::string(arg) + ", "; | |
| auto spaces = std::string(std::max(0, 7 - (int)tmp.size()), ' '); | |
| ss << tmp << spaces; | |
| } | |
| } else { | |
| ss << arg << (arg != args.back() ? ", " : ""); | |
| } | |
| } | |
| if (value_hint) ss << " " << value_hint; | |
| if (value_hint_2) ss << " " << value_hint_2; | |
| if (ss.tellp() > n_leading_spaces - 3) { | |
| // current line is too long, add new line | |
| ss << "\n" << leading_spaces; | |
| } else { | |
| // padding between arg and help, same line | |
| ss << std::string(leading_spaces.size() - ss.tellp(), ' '); | |
| } | |
| const auto help_lines = break_str_into_lines(help, n_char_per_line_help); | |
| for (const auto & line : help_lines) { | |
| ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n"; | |
| } | |
| return ss.str(); | |
| } | |
| // | |
| // utils | |
| // | |
| static void common_params_handle_model_default( | |
| std::string & model, | |
| const std::string & model_url, | |
| std::string & hf_repo, | |
| std::string & hf_file, | |
| const std::string & hf_token, | |
| const std::string & model_default) { | |
| if (!hf_repo.empty()) { | |
| // short-hand to avoid specifying --hf-file -> default it to --model | |
| if (hf_file.empty()) { | |
| if (model.empty()) { | |
| auto auto_detected = common_get_hf_file(hf_repo, hf_token); | |
| if (auto_detected.first.empty() || auto_detected.second.empty()) { | |
| exit(1); // built without CURL, error message already printed | |
| } | |
| hf_repo = auto_detected.first; | |
| hf_file = auto_detected.second; | |
| } else { | |
| hf_file = model; | |
| } | |
| } | |
| // make sure model path is present (for caching purposes) | |
| if (model.empty()) { | |
| // this is to avoid different repo having same file name, or same file name in different subdirs | |
| std::string filename = hf_repo + "_" + hf_file; | |
| // to make sure we don't have any slashes in the filename | |
| string_replace_all(filename, "/", "_"); | |
| model = fs_get_cache_file(filename); | |
| } | |
| } else if (!model_url.empty()) { | |
| if (model.empty()) { | |
| auto f = string_split<std::string>(model_url, '#').front(); | |
| f = string_split<std::string>(f, '?').front(); | |
| model = fs_get_cache_file(string_split<std::string>(f, '/').back()); | |
| } | |
| } else if (model.empty()) { | |
| model = model_default; | |
| } | |
| } | |
| const std::vector<ggml_type> kv_cache_types = { | |
| GGML_TYPE_F32, | |
| GGML_TYPE_F16, | |
| GGML_TYPE_BF16, | |
| GGML_TYPE_Q8_0, | |
| GGML_TYPE_Q4_0, | |
| GGML_TYPE_Q4_1, | |
| GGML_TYPE_IQ4_NL, | |
| GGML_TYPE_Q5_0, | |
| GGML_TYPE_Q5_1, | |
| }; | |
| static ggml_type kv_cache_type_from_str(const std::string & s) { | |
| for (const auto & type : kv_cache_types) { | |
| if (ggml_type_name(type) == s) { | |
| return type; | |
| } | |
| } | |
| throw std::runtime_error("Unsupported cache type: " + s); | |
| } | |
| static std::string get_all_kv_cache_types() { | |
| std::ostringstream msg; | |
| for (const auto & type : kv_cache_types) { | |
| msg << ggml_type_name(type) << (&type == &kv_cache_types.back() ? "" : ", "); | |
| } | |
| return msg.str(); | |
| } | |
| // | |
| // CLI argument parsing functions | |
| // | |
| static bool common_params_parse_ex(int argc, char ** argv, common_params_context & ctx_arg) { | |
| std::string arg; | |
| const std::string arg_prefix = "--"; | |
| common_params & params = ctx_arg.params; | |
| std::unordered_map<std::string, common_arg *> arg_to_options; | |
| for (auto & opt : ctx_arg.options) { | |
| for (const auto & arg : opt.args) { | |
| arg_to_options[arg] = &opt; | |
| } | |
| } | |
| // handle environment variables | |
| for (auto & opt : ctx_arg.options) { | |
| std::string value; | |
| if (opt.get_value_from_env(value)) { | |
| try { | |
| if (opt.handler_void && (value == "1" || value == "true")) { | |
| opt.handler_void(params); | |
| } | |
| if (opt.handler_int) { | |
| opt.handler_int(params, std::stoi(value)); | |
| } | |
| if (opt.handler_string) { | |
| opt.handler_string(params, value); | |
| continue; | |
| } | |
| } catch (std::exception & e) { | |
| throw std::invalid_argument(string_format( | |
| "error while handling environment variable \"%s\": %s\n\n", opt.env, e.what())); | |
| } | |
| } | |
| } | |
| // handle command line arguments | |
| auto check_arg = [&](int i) { | |
| if (i+1 >= argc) { | |
| throw std::invalid_argument("expected value for argument"); | |
| } | |
| }; | |
| for (int i = 1; i < argc; i++) { | |
| const std::string arg_prefix = "--"; | |
| std::string arg = argv[i]; | |
| if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { | |
| std::replace(arg.begin(), arg.end(), '_', '-'); | |
| } | |
| if (arg_to_options.find(arg) == arg_to_options.end()) { | |
| throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str())); | |
| } | |
| auto opt = *arg_to_options[arg]; | |
| if (opt.has_value_from_env()) { | |
| fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str()); | |
| } | |
| try { | |
| if (opt.handler_void) { | |
| opt.handler_void(params); | |
| continue; | |
| } | |
| // arg with single value | |
| check_arg(i); | |
| std::string val = argv[++i]; | |
| if (opt.handler_int) { | |
| opt.handler_int(params, std::stoi(val)); | |
| continue; | |
| } | |
| if (opt.handler_string) { | |
| opt.handler_string(params, val); | |
| continue; | |
| } | |
| // arg with 2 values | |
| check_arg(i); | |
| std::string val2 = argv[++i]; | |
| if (opt.handler_str_str) { | |
| opt.handler_str_str(params, val, val2); | |
| continue; | |
| } | |
| } catch (std::exception & e) { | |
| throw std::invalid_argument(string_format( | |
| "error while handling argument \"%s\": %s\n\n" | |
| "usage:\n%s\n\nto show complete usage, run with -h", | |
| arg.c_str(), e.what(), arg_to_options[arg]->to_string().c_str())); | |
| } | |
| } | |
| postprocess_cpu_params(params.cpuparams, nullptr); | |
| postprocess_cpu_params(params.cpuparams_batch, ¶ms.cpuparams); | |
| postprocess_cpu_params(params.speculative.cpuparams, ¶ms.cpuparams); | |
| postprocess_cpu_params(params.speculative.cpuparams_batch, ¶ms.cpuparams_batch); | |
| if (params.prompt_cache_all && (params.interactive || params.interactive_first)) { | |
| throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n"); | |
| } | |
| // TODO: refactor model params in a common struct | |
| common_params_handle_model_default(params.model, params.model_url, params.hf_repo, params.hf_file, params.hf_token, DEFAULT_MODEL_PATH); | |
| common_params_handle_model_default(params.speculative.model, params.speculative.model_url, params.speculative.hf_repo, params.speculative.hf_file, params.hf_token, ""); | |
| common_params_handle_model_default(params.vocoder.model, params.vocoder.model_url, params.vocoder.hf_repo, params.vocoder.hf_file, params.hf_token, ""); | |
| if (params.escape) { | |
| string_process_escapes(params.prompt); | |
| string_process_escapes(params.input_prefix); | |
| string_process_escapes(params.input_suffix); | |
| for (auto & antiprompt : params.antiprompt) { | |
| string_process_escapes(antiprompt); | |
| } | |
| for (auto & seq_breaker : params.sampling.dry_sequence_breakers) { | |
| string_process_escapes(seq_breaker); | |
| } | |
| } | |
| if (!params.kv_overrides.empty()) { | |
| params.kv_overrides.emplace_back(); | |
| params.kv_overrides.back().key[0] = 0; | |
| } | |
| if (params.reranking && params.embedding) { | |
| throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both"); | |
| } | |
| if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) { | |
| throw std::runtime_error(string_format( | |
| "error: the supplied chat template is not supported: %s%s\n", | |
| params.chat_template.c_str(), | |
| params.use_jinja ? "" : "\nnote: llama.cpp was started without --jinja, we only support commonly used templates" | |
| )); | |
| } | |
| return true; | |
| } | |
| static void common_params_print_usage(common_params_context & ctx_arg) { | |
| auto print_options = [](std::vector<common_arg *> & options) { | |
| for (common_arg * opt : options) { | |
| printf("%s", opt->to_string().c_str()); | |
| } | |
| }; | |
| std::vector<common_arg *> common_options; | |
| std::vector<common_arg *> sparam_options; | |
| std::vector<common_arg *> specific_options; | |
| for (auto & opt : ctx_arg.options) { | |
| // in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example | |
| if (opt.is_sparam) { | |
| sparam_options.push_back(&opt); | |
| } else if (opt.in_example(ctx_arg.ex)) { | |
| specific_options.push_back(&opt); | |
| } else { | |
| common_options.push_back(&opt); | |
| } | |
| } | |
| printf("----- common params -----\n\n"); | |
| print_options(common_options); | |
| printf("\n\n----- sampling params -----\n\n"); | |
| print_options(sparam_options); | |
| // TODO: maybe convert enum llama_example to string | |
| printf("\n\n----- example-specific params -----\n\n"); | |
| print_options(specific_options); | |
| } | |
| static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & value) { | |
| std::vector<ggml_backend_dev_t> devices; | |
| auto dev_names = string_split<std::string>(value, ','); | |
| if (dev_names.empty()) { | |
| throw std::invalid_argument("no devices specified"); | |
| } | |
| if (dev_names.size() == 1 && dev_names[0] == "none") { | |
| devices.push_back(nullptr); | |
| } else { | |
| for (const auto & device : dev_names) { | |
| auto * dev = ggml_backend_dev_by_name(device.c_str()); | |
| if (!dev || ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_GPU) { | |
| throw std::invalid_argument(string_format("invalid device: %s", device.c_str())); | |
| } | |
| devices.push_back(dev); | |
| } | |
| devices.push_back(nullptr); | |
| } | |
| return devices; | |
| } | |
| static void add_rpc_devices(std::string servers) { | |
| auto rpc_servers = string_split<std::string>(servers, ','); | |
| if (rpc_servers.empty()) { | |
| throw std::invalid_argument("no RPC servers specified"); | |
| } | |
| ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC"); | |
| if (!rpc_reg) { | |
| throw std::invalid_argument("failed to find RPC backend"); | |
| } | |
| typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint); | |
| ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device"); | |
| if (!ggml_backend_rpc_add_device_fn) { | |
| throw std::invalid_argument("failed to find RPC device add function"); | |
| } | |
| for (const auto & server : rpc_servers) { | |
| ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str()); | |
| if (dev) { | |
| ggml_backend_device_register(dev); | |
| } else { | |
| throw std::invalid_argument("failed to register RPC device"); | |
| } | |
| } | |
| } | |
| bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) { | |
| auto ctx_arg = common_params_parser_init(params, ex, print_usage); | |
| const common_params params_org = ctx_arg.params; // the example can modify the default params | |
| try { | |
| if (!common_params_parse_ex(argc, argv, ctx_arg)) { | |
| ctx_arg.params = params_org; | |
| return false; | |
| } | |
| if (ctx_arg.params.usage) { | |
| common_params_print_usage(ctx_arg); | |
| if (ctx_arg.print_usage) { | |
| ctx_arg.print_usage(argc, argv); | |
| } | |
| exit(0); | |
| } | |
| } catch (const std::invalid_argument & ex) { | |
| fprintf(stderr, "%s\n", ex.what()); | |
| ctx_arg.params = params_org; | |
| return false; | |
| } | |
| return true; | |
| } | |
| static std::string list_builtin_chat_templates() { | |
| std::vector<const char *> supported_tmpl; | |
| int32_t res = llama_chat_builtin_templates(nullptr, 0); | |
| supported_tmpl.resize(res); | |
| res = llama_chat_builtin_templates(supported_tmpl.data(), supported_tmpl.size()); | |
| std::ostringstream msg; | |
| for (auto & tmpl : supported_tmpl) { | |
| msg << tmpl << (&tmpl == &supported_tmpl.back() ? "" : ", "); | |
| } | |
| return msg.str(); | |
| } | |
| common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) { | |
| // load dynamic backends | |
| ggml_backend_load_all(); | |
| common_params_context ctx_arg(params); | |
| ctx_arg.print_usage = print_usage; | |
| ctx_arg.ex = ex; | |
| std::string sampler_type_chars; | |
| std::string sampler_type_names; | |
| for (const auto & sampler : params.sampling.samplers) { | |
| sampler_type_chars += common_sampler_type_to_chr(sampler); | |
| sampler_type_names += common_sampler_type_to_str(sampler) + ";"; | |
| } | |
| sampler_type_names.pop_back(); | |
| /** | |
| * filter options by example | |
| * rules: | |
| * - all examples inherit options from LLAMA_EXAMPLE_COMMON | |
| * - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example | |
| * - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example | |
| */ | |
| auto add_opt = [&](common_arg arg) { | |
| if ((arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) && !arg.is_exclude(ex)) { | |
| ctx_arg.options.push_back(std::move(arg)); | |
| } | |
| }; | |
| add_opt(common_arg( | |
| {"-h", "--help", "--usage"}, | |
| "print usage and exit", | |
| [](common_params & params) { | |
| params.usage = true; | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"--version"}, | |
| "show version and build info", | |
| [](common_params &) { | |
| fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT); | |
| fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET); | |
| exit(0); | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"--verbose-prompt"}, | |
| string_format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"), | |
| [](common_params & params) { | |
| params.verbose_prompt = true; | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"--no-display-prompt"}, | |
| string_format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"), | |
| [](common_params & params) { | |
| params.display_prompt = false; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN})); | |
| add_opt(common_arg( | |
| {"-co", "--color"}, | |
| string_format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"), | |
| [](common_params & params) { | |
| params.use_color = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP})); | |
| add_opt(common_arg( | |
| {"-t", "--threads"}, "N", | |
| string_format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads), | |
| [](common_params & params, int value) { | |
| params.cpuparams.n_threads = value; | |
| if (params.cpuparams.n_threads <= 0) { | |
| params.cpuparams.n_threads = std::thread::hardware_concurrency(); | |
| } | |
| } | |
| ).set_env("LLAMA_ARG_THREADS")); | |
| add_opt(common_arg( | |
| {"-tb", "--threads-batch"}, "N", | |
| "number of threads to use during batch and prompt processing (default: same as --threads)", | |
| [](common_params & params, int value) { | |
| params.cpuparams_batch.n_threads = value; | |
| if (params.cpuparams_batch.n_threads <= 0) { | |
| params.cpuparams_batch.n_threads = std::thread::hardware_concurrency(); | |
| } | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"-C", "--cpu-mask"}, "M", | |
| "CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")", | |
| [](common_params & params, const std::string & mask) { | |
| params.cpuparams.mask_valid = true; | |
| if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) { | |
| throw std::invalid_argument("invalid cpumask"); | |
| } | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"-Cr", "--cpu-range"}, "lo-hi", | |
| "range of CPUs for affinity. Complements --cpu-mask", | |
| [](common_params & params, const std::string & range) { | |
| params.cpuparams.mask_valid = true; | |
| if (!parse_cpu_range(range, params.cpuparams.cpumask)) { | |
| throw std::invalid_argument("invalid range"); | |
| } | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"--cpu-strict"}, "<0|1>", | |
| string_format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu), | |
| [](common_params & params, const std::string & value) { | |
| params.cpuparams.strict_cpu = std::stoul(value); | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"--prio"}, "N", | |
| string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams.priority), | |
| [](common_params & params, int prio) { | |
| if (prio < 0 || prio > 3) { | |
| throw std::invalid_argument("invalid value"); | |
| } | |
| params.cpuparams.priority = (enum ggml_sched_priority) prio; | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"--poll"}, "<0...100>", | |
| string_format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll), | |
| [](common_params & params, const std::string & value) { | |
| params.cpuparams.poll = std::stoul(value); | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"-Cb", "--cpu-mask-batch"}, "M", | |
| "CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)", | |
| [](common_params & params, const std::string & mask) { | |
| params.cpuparams_batch.mask_valid = true; | |
| if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) { | |
| throw std::invalid_argument("invalid cpumask"); | |
| } | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"-Crb", "--cpu-range-batch"}, "lo-hi", | |
| "ranges of CPUs for affinity. Complements --cpu-mask-batch", | |
| [](common_params & params, const std::string & range) { | |
| params.cpuparams_batch.mask_valid = true; | |
| if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) { | |
| throw std::invalid_argument("invalid range"); | |
| } | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"--cpu-strict-batch"}, "<0|1>", | |
| "use strict CPU placement (default: same as --cpu-strict)", | |
| [](common_params & params, int value) { | |
| params.cpuparams_batch.strict_cpu = value; | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"--prio-batch"}, "N", | |
| string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams_batch.priority), | |
| [](common_params & params, int prio) { | |
| if (prio < 0 || prio > 3) { | |
| throw std::invalid_argument("invalid value"); | |
| } | |
| params.cpuparams_batch.priority = (enum ggml_sched_priority) prio; | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"--poll-batch"}, "<0|1>", | |
| "use polling to wait for work (default: same as --poll)", | |
| [](common_params & params, int value) { | |
| params.cpuparams_batch.poll = value; | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"-lcs", "--lookup-cache-static"}, "FNAME", | |
| "path to static lookup cache to use for lookup decoding (not updated by generation)", | |
| [](common_params & params, const std::string & value) { | |
| params.lookup_cache_static = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_LOOKUP})); | |
| add_opt(common_arg( | |
| {"-lcd", "--lookup-cache-dynamic"}, "FNAME", | |
| "path to dynamic lookup cache to use for lookup decoding (updated by generation)", | |
| [](common_params & params, const std::string & value) { | |
| params.lookup_cache_dynamic = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_LOOKUP})); | |
| add_opt(common_arg( | |
| {"-c", "--ctx-size"}, "N", | |
| string_format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx), | |
| [](common_params & params, int value) { | |
| params.n_ctx = value; | |
| } | |
| ).set_env("LLAMA_ARG_CTX_SIZE")); | |
| add_opt(common_arg( | |
| {"-n", "--predict", "--n-predict"}, "N", | |
| string_format("number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)", params.n_predict), | |
| [](common_params & params, int value) { | |
| params.n_predict = value; | |
| } | |
| ).set_env("LLAMA_ARG_N_PREDICT")); | |
| add_opt(common_arg( | |
| {"-b", "--batch-size"}, "N", | |
| string_format("logical maximum batch size (default: %d)", params.n_batch), | |
| [](common_params & params, int value) { | |
| params.n_batch = value; | |
| } | |
| ).set_env("LLAMA_ARG_BATCH")); | |
| add_opt(common_arg( | |
| {"-ub", "--ubatch-size"}, "N", | |
| string_format("physical maximum batch size (default: %d)", params.n_ubatch), | |
| [](common_params & params, int value) { | |
| params.n_ubatch = value; | |
| } | |
| ).set_env("LLAMA_ARG_UBATCH")); | |
| add_opt(common_arg( | |
| {"--keep"}, "N", | |
| string_format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep), | |
| [](common_params & params, int value) { | |
| params.n_keep = value; | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"--no-context-shift"}, | |
| string_format("disables context shift on inifinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"), | |
| [](common_params & params) { | |
| params.ctx_shift = false; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT")); | |
| add_opt(common_arg( | |
| {"--chunks"}, "N", | |
| string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks), | |
| [](common_params & params, int value) { | |
| params.n_chunks = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL})); | |
| add_opt(common_arg( | |
| {"-fa", "--flash-attn"}, | |
| string_format("enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled"), | |
| [](common_params & params) { | |
| params.flash_attn = true; | |
| } | |
| ).set_env("LLAMA_ARG_FLASH_ATTN")); | |
| add_opt(common_arg( | |
| {"-p", "--prompt"}, "PROMPT", | |
| ex == LLAMA_EXAMPLE_MAIN | |
| ? "prompt to start generation with\nif -cnv is set, this will be used as system prompt" | |
| : "prompt to start generation with", | |
| [](common_params & params, const std::string & value) { | |
| params.prompt = value; | |
| } | |
| ).set_excludes({LLAMA_EXAMPLE_SERVER})); | |
| add_opt(common_arg( | |
| {"--no-perf"}, | |
| string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"), | |
| [](common_params & params) { | |
| params.no_perf = true; | |
| params.sampling.no_perf = true; | |
| } | |
| ).set_env("LLAMA_ARG_NO_PERF")); | |
| add_opt(common_arg( | |
| {"-f", "--file"}, "FNAME", | |
| "a file containing the prompt (default: none)", | |
| [](common_params & params, const std::string & value) { | |
| std::ifstream file(value); | |
| if (!file) { | |
| throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); | |
| } | |
| // store the external file name in params | |
| params.prompt_file = value; | |
| std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt)); | |
| if (!params.prompt.empty() && params.prompt.back() == '\n') { | |
| params.prompt.pop_back(); | |
| } | |
| } | |
| ).set_excludes({LLAMA_EXAMPLE_SERVER})); | |
| add_opt(common_arg( | |
| {"--in-file"}, "FNAME", | |
| "an input file (repeat to specify multiple files)", | |
| [](common_params & params, const std::string & value) { | |
| std::ifstream file(value); | |
| if (!file) { | |
| throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); | |
| } | |
| params.in_files.push_back(value); | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_IMATRIX})); | |
| add_opt(common_arg( | |
| {"-bf", "--binary-file"}, "FNAME", | |
| "binary file containing the prompt (default: none)", | |
| [](common_params & params, const std::string & value) { | |
| std::ifstream file(value, std::ios::binary); | |
| if (!file) { | |
| throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); | |
| } | |
| // store the external file name in params | |
| params.prompt_file = value; | |
| std::ostringstream ss; | |
| ss << file.rdbuf(); | |
| params.prompt = ss.str(); | |
| fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str()); | |
| } | |
| ).set_excludes({LLAMA_EXAMPLE_SERVER})); | |
| add_opt(common_arg( | |
| {"-e", "--escape"}, | |
| string_format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"), | |
| [](common_params & params) { | |
| params.escape = true; | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"--no-escape"}, | |
| "do not process escape sequences", | |
| [](common_params & params) { | |
| params.escape = false; | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"-ptc", "--print-token-count"}, "N", | |
| string_format("print token count every N tokens (default: %d)", params.n_print), | |
| [](common_params & params, int value) { | |
| params.n_print = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN})); | |
| add_opt(common_arg( | |
| {"--prompt-cache"}, "FNAME", | |
| "file to cache prompt state for faster startup (default: none)", | |
| [](common_params & params, const std::string & value) { | |
| params.path_prompt_cache = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN})); | |
| add_opt(common_arg( | |
| {"--prompt-cache-all"}, | |
| "if specified, saves user input and generations to cache as well\n", | |
| [](common_params & params) { | |
| params.prompt_cache_all = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN})); | |
| add_opt(common_arg( | |
| {"--prompt-cache-ro"}, | |
| "if specified, uses the prompt cache but does not update it", | |
| [](common_params & params) { | |
| params.prompt_cache_ro = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN})); | |
| add_opt(common_arg( | |
| {"-r", "--reverse-prompt"}, "PROMPT", | |
| "halt generation at PROMPT, return control in interactive mode\n", | |
| [](common_params & params, const std::string & value) { | |
| params.antiprompt.emplace_back(value); | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN})); | |
| add_opt(common_arg( | |
| {"-sp", "--special"}, | |
| string_format("special tokens output enabled (default: %s)", params.special ? "true" : "false"), | |
| [](common_params & params) { | |
| params.special = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER})); | |
| add_opt(common_arg( | |
| {"-cnv", "--conversation"}, | |
| "run in conversation mode:\n" | |
| "- does not print special tokens and suffix/prefix\n" | |
| "- interactive mode is also enabled\n" | |
| "(default: auto enabled if chat template is available)", | |
| [](common_params & params) { | |
| params.conversation_mode = COMMON_CONVERSATION_MODE_ENABLED; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN})); | |
| add_opt(common_arg( | |
| {"-no-cnv", "--no-conversation"}, | |
| "force disable conversation mode (default: false)", | |
| [](common_params & params) { | |
| params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN})); | |
| add_opt(common_arg( | |
| {"-i", "--interactive"}, | |
| string_format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"), | |
| [](common_params & params) { | |
| params.interactive = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN})); | |
| add_opt(common_arg( | |
| {"-if", "--interactive-first"}, | |
| string_format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"), | |
| [](common_params & params) { | |
| params.interactive_first = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN})); | |
| add_opt(common_arg( | |
| {"-mli", "--multiline-input"}, | |
| "allows you to write or paste multiple lines without ending each in '\\'", | |
| [](common_params & params) { | |
| params.multiline_input = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN})); | |
| add_opt(common_arg( | |
| {"--in-prefix-bos"}, | |
| "prefix BOS to user inputs, preceding the `--in-prefix` string", | |
| [](common_params & params) { | |
| params.input_prefix_bos = true; | |
| params.enable_chat_template = false; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN})); | |
| add_opt(common_arg( | |
| {"--in-prefix"}, "STRING", | |
| "string to prefix user inputs with (default: empty)", | |
| [](common_params & params, const std::string & value) { | |
| params.input_prefix = value; | |
| params.enable_chat_template = false; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL})); | |
| add_opt(common_arg( | |
| {"--in-suffix"}, "STRING", | |
| "string to suffix after user inputs with (default: empty)", | |
| [](common_params & params, const std::string & value) { | |
| params.input_suffix = value; | |
| params.enable_chat_template = false; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL})); | |
| add_opt(common_arg( | |
| {"--no-warmup"}, | |
| "skip warming up the model with an empty run", | |
| [](common_params & params) { | |
| params.warmup = false; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING})); | |
| add_opt(common_arg( | |
| {"--spm-infill"}, | |
| string_format( | |
| "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)", | |
| params.spm_infill ? "enabled" : "disabled" | |
| ), | |
| [](common_params & params) { | |
| params.spm_infill = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_INFILL})); | |
| add_opt(common_arg( | |
| {"--samplers"}, "SAMPLERS", | |
| string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()), | |
| [](common_params & params, const std::string & value) { | |
| const auto sampler_names = string_split<std::string>(value, ';'); | |
| params.sampling.samplers = common_sampler_types_from_names(sampler_names, true); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"-s", "--seed"}, "SEED", | |
| string_format("RNG seed (default: %d, use random seed for %d)", params.sampling.seed, LLAMA_DEFAULT_SEED), | |
| [](common_params & params, const std::string & value) { | |
| params.sampling.seed = std::stoul(value); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--sampling-seq", "--sampler-seq"}, "SEQUENCE", | |
| string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()), | |
| [](common_params & params, const std::string & value) { | |
| params.sampling.samplers = common_sampler_types_from_chars(value); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--ignore-eos"}, | |
| "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)", | |
| [](common_params & params) { | |
| params.sampling.ignore_eos = true; | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--temp"}, "N", | |
| string_format("temperature (default: %.1f)", (double)params.sampling.temp), | |
| [](common_params & params, const std::string & value) { | |
| params.sampling.temp = std::stof(value); | |
| params.sampling.temp = std::max(params.sampling.temp, 0.0f); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--top-k"}, "N", | |
| string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k), | |
| [](common_params & params, int value) { | |
| params.sampling.top_k = value; | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--top-p"}, "N", | |
| string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p), | |
| [](common_params & params, const std::string & value) { | |
| params.sampling.top_p = std::stof(value); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--min-p"}, "N", | |
| string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p), | |
| [](common_params & params, const std::string & value) { | |
| params.sampling.min_p = std::stof(value); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--xtc-probability"}, "N", | |
| string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability), | |
| [](common_params & params, const std::string & value) { | |
| params.sampling.xtc_probability = std::stof(value); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--xtc-threshold"}, "N", | |
| string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold), | |
| [](common_params & params, const std::string & value) { | |
| params.sampling.xtc_threshold = std::stof(value); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--typical"}, "N", | |
| string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sampling.typ_p), | |
| [](common_params & params, const std::string & value) { | |
| params.sampling.typ_p = std::stof(value); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--repeat-last-n"}, "N", | |
| string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sampling.penalty_last_n), | |
| [](common_params & params, int value) { | |
| if (value < -1) { | |
| throw std::runtime_error(string_format("error: invalid repeat-last-n = %d\n", value)); | |
| } | |
| params.sampling.penalty_last_n = value; | |
| params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--repeat-penalty"}, "N", | |
| string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat), | |
| [](common_params & params, const std::string & value) { | |
| params.sampling.penalty_repeat = std::stof(value); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--presence-penalty"}, "N", | |
| string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_present), | |
| [](common_params & params, const std::string & value) { | |
| params.sampling.penalty_present = std::stof(value); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--frequency-penalty"}, "N", | |
| string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_freq), | |
| [](common_params & params, const std::string & value) { | |
| params.sampling.penalty_freq = std::stof(value); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--dry-multiplier"}, "N", | |
| string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sampling.dry_multiplier), | |
| [](common_params & params, const std::string & value) { | |
| params.sampling.dry_multiplier = std::stof(value); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--dry-base"}, "N", | |
| string_format("set DRY sampling base value (default: %.2f)", (double)params.sampling.dry_base), | |
| [](common_params & params, const std::string & value) { | |
| float potential_base = std::stof(value); | |
| if (potential_base >= 1.0f) | |
| { | |
| params.sampling.dry_base = potential_base; | |
| } | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--dry-allowed-length"}, "N", | |
| string_format("set allowed length for DRY sampling (default: %d)", params.sampling.dry_allowed_length), | |
| [](common_params & params, int value) { | |
| params.sampling.dry_allowed_length = value; | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--dry-penalty-last-n"}, "N", | |
| string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sampling.dry_penalty_last_n), | |
| [](common_params & params, int value) { | |
| if (value < -1) { | |
| throw std::runtime_error(string_format("error: invalid dry-penalty-last-n = %d\n", value)); | |
| } | |
| params.sampling.dry_penalty_last_n = value; | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--dry-sequence-breaker"}, "STRING", | |
| string_format("add sequence breaker for DRY sampling, clearing out default breakers (%s) in the process; use \"none\" to not use any sequence breakers\n", | |
| params.sampling.dry_sequence_breakers.empty() ? "none" : | |
| std::accumulate(std::next(params.sampling.dry_sequence_breakers.begin()), | |
| params.sampling.dry_sequence_breakers.end(), | |
| std::string("'") + (params.sampling.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sampling.dry_sequence_breakers[0]) + "'", | |
| [](const std::string& a, const std::string& b) { | |
| std::string formatted_b = (b == "\n") ? "\\n" : b; | |
| return a + ", '" + formatted_b + "'"; | |
| }).c_str()), | |
| [](common_params & params, const std::string & value) { | |
| static bool defaults_cleared = false; | |
| if (!defaults_cleared) { | |
| params.sampling.dry_sequence_breakers.clear(); | |
| defaults_cleared = true; | |
| } | |
| if (value == "none") { | |
| params.sampling.dry_sequence_breakers.clear(); | |
| } else { | |
| params.sampling.dry_sequence_breakers.emplace_back(value); | |
| } | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--dynatemp-range"}, "N", | |
| string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sampling.dynatemp_range), | |
| [](common_params & params, const std::string & value) { | |
| params.sampling.dynatemp_range = std::stof(value); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--dynatemp-exp"}, "N", | |
| string_format("dynamic temperature exponent (default: %.1f)", (double)params.sampling.dynatemp_exponent), | |
| [](common_params & params, const std::string & value) { | |
| params.sampling.dynatemp_exponent = std::stof(value); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--mirostat"}, "N", | |
| string_format("use Mirostat sampling.\nTop K, Nucleus and Locally Typical samplers are ignored if used.\n" | |
| "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat), | |
| [](common_params & params, int value) { | |
| params.sampling.mirostat = value; | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--mirostat-lr"}, "N", | |
| string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta), | |
| [](common_params & params, const std::string & value) { | |
| params.sampling.mirostat_eta = std::stof(value); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--mirostat-ent"}, "N", | |
| string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau), | |
| [](common_params & params, const std::string & value) { | |
| params.sampling.mirostat_tau = std::stof(value); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS", | |
| "modifies the likelihood of token appearing in the completion,\n" | |
| "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n" | |
| "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'", | |
| [](common_params & params, const std::string & value) { | |
| std::stringstream ss(value); | |
| llama_token key; | |
| char sign; | |
| std::string value_str; | |
| try { | |
| if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) { | |
| const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f); | |
| params.sampling.logit_bias.push_back({key, bias}); | |
| } else { | |
| throw std::invalid_argument("invalid input format"); | |
| } | |
| } catch (const std::exception&) { | |
| throw std::invalid_argument("invalid input format"); | |
| } | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--grammar"}, "GRAMMAR", | |
| string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sampling.grammar.c_str()), | |
| [](common_params & params, const std::string & value) { | |
| params.sampling.grammar = value; | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--grammar-file"}, "FNAME", | |
| "file to read grammar from", | |
| [](common_params & params, const std::string & value) { | |
| std::ifstream file(value); | |
| if (!file) { | |
| throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); | |
| } | |
| std::copy( | |
| std::istreambuf_iterator<char>(file), | |
| std::istreambuf_iterator<char>(), | |
| std::back_inserter(params.sampling.grammar) | |
| ); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"-j", "--json-schema"}, "SCHEMA", | |
| "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead", | |
| [](common_params & params, const std::string & value) { | |
| params.sampling.grammar = json_schema_to_grammar(json::parse(value)); | |
| } | |
| ).set_sparam()); | |
| add_opt(common_arg( | |
| {"--pooling"}, "{none,mean,cls,last,rank}", | |
| "pooling type for embeddings, use model default if unspecified", | |
| [](common_params & params, const std::string & value) { | |
| /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; } | |
| else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; } | |
| else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; } | |
| else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; } | |
| else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; } | |
| else { throw std::invalid_argument("invalid value"); } | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING")); | |
| add_opt(common_arg( | |
| {"--attention"}, "{causal,non-causal}", | |
| "attention type for embeddings, use model default if unspecified", | |
| [](common_params & params, const std::string & value) { | |
| /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; } | |
| else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; } | |
| else { throw std::invalid_argument("invalid value"); } | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_EMBEDDING})); | |
| add_opt(common_arg( | |
| {"--rope-scaling"}, "{none,linear,yarn}", | |
| "RoPE frequency scaling method, defaults to linear unless specified by the model", | |
| [](common_params & params, const std::string & value) { | |
| /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; } | |
| else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; } | |
| else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; } | |
| else { throw std::invalid_argument("invalid value"); } | |
| } | |
| ).set_env("LLAMA_ARG_ROPE_SCALING_TYPE")); | |
| add_opt(common_arg( | |
| {"--rope-scale"}, "N", | |
| "RoPE context scaling factor, expands context by a factor of N", | |
| [](common_params & params, const std::string & value) { | |
| params.rope_freq_scale = 1.0f / std::stof(value); | |
| } | |
| ).set_env("LLAMA_ARG_ROPE_SCALE")); | |
| add_opt(common_arg( | |
| {"--rope-freq-base"}, "N", | |
| "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)", | |
| [](common_params & params, const std::string & value) { | |
| params.rope_freq_base = std::stof(value); | |
| } | |
| ).set_env("LLAMA_ARG_ROPE_FREQ_BASE")); | |
| add_opt(common_arg( | |
| {"--rope-freq-scale"}, "N", | |
| "RoPE frequency scaling factor, expands context by a factor of 1/N", | |
| [](common_params & params, const std::string & value) { | |
| params.rope_freq_scale = std::stof(value); | |
| } | |
| ).set_env("LLAMA_ARG_ROPE_FREQ_SCALE")); | |
| add_opt(common_arg( | |
| {"--yarn-orig-ctx"}, "N", | |
| string_format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx), | |
| [](common_params & params, int value) { | |
| params.yarn_orig_ctx = value; | |
| } | |
| ).set_env("LLAMA_ARG_YARN_ORIG_CTX")); | |
| add_opt(common_arg( | |
| {"--yarn-ext-factor"}, "N", | |
| string_format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor), | |
| [](common_params & params, const std::string & value) { | |
| params.yarn_ext_factor = std::stof(value); | |
| } | |
| ).set_env("LLAMA_ARG_YARN_EXT_FACTOR")); | |
| add_opt(common_arg( | |
| {"--yarn-attn-factor"}, "N", | |
| string_format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor), | |
| [](common_params & params, const std::string & value) { | |
| params.yarn_attn_factor = std::stof(value); | |
| } | |
| ).set_env("LLAMA_ARG_YARN_ATTN_FACTOR")); | |
| add_opt(common_arg( | |
| {"--yarn-beta-slow"}, "N", | |
| string_format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow), | |
| [](common_params & params, const std::string & value) { | |
| params.yarn_beta_slow = std::stof(value); | |
| } | |
| ).set_env("LLAMA_ARG_YARN_BETA_SLOW")); | |
| add_opt(common_arg( | |
| {"--yarn-beta-fast"}, "N", | |
| string_format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast), | |
| [](common_params & params, const std::string & value) { | |
| params.yarn_beta_fast = std::stof(value); | |
| } | |
| ).set_env("LLAMA_ARG_YARN_BETA_FAST")); | |
| add_opt(common_arg( | |
| {"-gan", "--grp-attn-n"}, "N", | |
| string_format("group-attention factor (default: %d)", params.grp_attn_n), | |
| [](common_params & params, int value) { | |
| params.grp_attn_n = value; | |
| } | |
| ).set_env("LLAMA_ARG_GRP_ATTN_N").set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_PASSKEY})); | |
| add_opt(common_arg( | |
| {"-gaw", "--grp-attn-w"}, "N", | |
| string_format("group-attention width (default: %d)", params.grp_attn_w), | |
| [](common_params & params, int value) { | |
| params.grp_attn_w = value; | |
| } | |
| ).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_MAIN})); | |
| add_opt(common_arg( | |
| {"-dkvc", "--dump-kv-cache"}, | |
| "verbose print of the KV cache", | |
| [](common_params & params) { | |
| params.dump_kv_cache = true; | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"-nkvo", "--no-kv-offload"}, | |
| "disable KV offload", | |
| [](common_params & params) { | |
| params.no_kv_offload = true; | |
| } | |
| ).set_env("LLAMA_ARG_NO_KV_OFFLOAD")); | |
| add_opt(common_arg( | |
| {"-ctk", "--cache-type-k"}, "TYPE", | |
| string_format( | |
| "KV cache data type for K\n" | |
| "allowed values: %s\n" | |
| "(default: %s)", | |
| get_all_kv_cache_types().c_str(), | |
| ggml_type_name(params.cache_type_k) | |
| ), | |
| [](common_params & params, const std::string & value) { | |
| params.cache_type_k = kv_cache_type_from_str(value); | |
| } | |
| ).set_env("LLAMA_ARG_CACHE_TYPE_K")); | |
| add_opt(common_arg( | |
| {"-ctv", "--cache-type-v"}, "TYPE", | |
| string_format( | |
| "KV cache data type for V\n" | |
| "allowed values: %s\n" | |
| "(default: %s)", | |
| get_all_kv_cache_types().c_str(), | |
| ggml_type_name(params.cache_type_v) | |
| ), | |
| [](common_params & params, const std::string & value) { | |
| params.cache_type_v = kv_cache_type_from_str(value); | |
| } | |
| ).set_env("LLAMA_ARG_CACHE_TYPE_V")); | |
| add_opt(common_arg( | |
| {"--perplexity", "--all-logits"}, | |
| string_format("return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false"), | |
| [](common_params & params) { | |
| params.logits_all = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
| add_opt(common_arg( | |
| {"--hellaswag"}, | |
| "compute HellaSwag score over random tasks from datafile supplied with -f", | |
| [](common_params & params) { | |
| params.hellaswag = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
| add_opt(common_arg( | |
| {"--hellaswag-tasks"}, "N", | |
| string_format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks), | |
| [](common_params & params, int value) { | |
| params.hellaswag_tasks = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
| add_opt(common_arg( | |
| {"--winogrande"}, | |
| "compute Winogrande score over random tasks from datafile supplied with -f", | |
| [](common_params & params) { | |
| params.winogrande = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
| add_opt(common_arg( | |
| {"--winogrande-tasks"}, "N", | |
| string_format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks), | |
| [](common_params & params, int value) { | |
| params.winogrande_tasks = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
| add_opt(common_arg( | |
| {"--multiple-choice"}, | |
| "compute multiple choice score over random tasks from datafile supplied with -f", | |
| [](common_params & params) { | |
| params.multiple_choice = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
| add_opt(common_arg( | |
| {"--multiple-choice-tasks"}, "N", | |
| string_format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks), | |
| [](common_params & params, int value) { | |
| params.multiple_choice_tasks = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
| add_opt(common_arg( | |
| {"--kl-divergence"}, | |
| "computes KL-divergence to logits provided via --kl-divergence-base", | |
| [](common_params & params) { | |
| params.kl_divergence = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
| add_opt(common_arg( | |
| {"--save-all-logits", "--kl-divergence-base"}, "FNAME", | |
| "set logits file", | |
| [](common_params & params, const std::string & value) { | |
| params.logits_file = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
| add_opt(common_arg( | |
| {"--ppl-stride"}, "N", | |
| string_format("stride for perplexity calculation (default: %d)", params.ppl_stride), | |
| [](common_params & params, int value) { | |
| params.ppl_stride = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
| add_opt(common_arg( | |
| {"--ppl-output-type"}, "<0|1>", | |
| string_format("output type for perplexity calculation (default: %d)", params.ppl_output_type), | |
| [](common_params & params, int value) { | |
| params.ppl_output_type = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
| add_opt(common_arg( | |
| {"-dt", "--defrag-thold"}, "N", | |
| string_format("KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold), | |
| [](common_params & params, const std::string & value) { | |
| params.defrag_thold = std::stof(value); | |
| } | |
| ).set_env("LLAMA_ARG_DEFRAG_THOLD")); | |
| add_opt(common_arg( | |
| {"-np", "--parallel"}, "N", | |
| string_format("number of parallel sequences to decode (default: %d)", params.n_parallel), | |
| [](common_params & params, int value) { | |
| params.n_parallel = value; | |
| } | |
| ).set_env("LLAMA_ARG_N_PARALLEL")); | |
| add_opt(common_arg( | |
| {"-ns", "--sequences"}, "N", | |
| string_format("number of sequences to decode (default: %d)", params.n_sequences), | |
| [](common_params & params, int value) { | |
| params.n_sequences = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_PARALLEL})); | |
| add_opt(common_arg( | |
| {"-cb", "--cont-batching"}, | |
| string_format("enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"), | |
| [](common_params & params) { | |
| params.cont_batching = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING")); | |
| add_opt(common_arg( | |
| {"-nocb", "--no-cont-batching"}, | |
| "disable continuous batching", | |
| [](common_params & params) { | |
| params.cont_batching = false; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING")); | |
| add_opt(common_arg( | |
| {"--mmproj"}, "FILE", | |
| "path to a multimodal projector file for LLaVA. see examples/llava/README.md", | |
| [](common_params & params, const std::string & value) { | |
| params.mmproj = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_LLAVA})); | |
| add_opt(common_arg( | |
| {"--image"}, "FILE", | |
| "path to an image file. use with multimodal models. Specify multiple times for batching", | |
| [](common_params & params, const std::string & value) { | |
| params.image.emplace_back(value); | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_LLAVA})); | |
| if (llama_supports_rpc()) { | |
| add_opt(common_arg( | |
| {"--rpc"}, "SERVERS", | |
| "comma separated list of RPC servers", | |
| [](common_params & params, const std::string & value) { | |
| add_rpc_devices(value); | |
| GGML_UNUSED(params); | |
| } | |
| ).set_env("LLAMA_ARG_RPC")); | |
| } | |
| add_opt(common_arg( | |
| {"--mlock"}, | |
| "force system to keep model in RAM rather than swapping or compressing", | |
| [](common_params & params) { | |
| params.use_mlock = true; | |
| } | |
| ).set_env("LLAMA_ARG_MLOCK")); | |
| add_opt(common_arg( | |
| {"--no-mmap"}, | |
| "do not memory-map model (slower load but may reduce pageouts if not using mlock)", | |
| [](common_params & params) { | |
| params.use_mmap = false; | |
| } | |
| ).set_env("LLAMA_ARG_NO_MMAP")); | |
| add_opt(common_arg( | |
| {"--numa"}, "TYPE", | |
| "attempt optimizations that help on some NUMA systems\n" | |
| "- distribute: spread execution evenly over all nodes\n" | |
| "- isolate: only spawn threads on CPUs on the node that execution started on\n" | |
| "- numactl: use the CPU map provided by numactl\n" | |
| "if run without this previously, it is recommended to drop the system page cache before using this\n" | |
| "see https://github.com/ggerganov/llama.cpp/issues/1437", | |
| [](common_params & params, const std::string & value) { | |
| /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; } | |
| else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; } | |
| else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; } | |
| else { throw std::invalid_argument("invalid value"); } | |
| } | |
| ).set_env("LLAMA_ARG_NUMA")); | |
| add_opt(common_arg( | |
| {"-dev", "--device"}, "<dev1,dev2,..>", | |
| "comma-separated list of devices to use for offloading (none = don't offload)\n" | |
| "use --list-devices to see a list of available devices", | |
| [](common_params & params, const std::string & value) { | |
| params.devices = parse_device_list(value); | |
| } | |
| ).set_env("LLAMA_ARG_DEVICE")); | |
| add_opt(common_arg( | |
| {"--list-devices"}, | |
| "print list of available devices and exit", | |
| [](common_params &) { | |
| std::vector<ggml_backend_dev_t> rpc_devices; | |
| std::vector<ggml_backend_dev_t> all_devices; | |
| for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { | |
| auto * dev = ggml_backend_dev_get(i); | |
| if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_GPU) { | |
| ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev); | |
| if (ggml_backend_reg_name(reg) == std::string("RPC")) { | |
| rpc_devices.push_back(dev); | |
| } else { | |
| all_devices.push_back(dev); | |
| } | |
| } | |
| } | |
| // insert RPC devices in front | |
| all_devices.insert(all_devices.begin(), rpc_devices.begin(), rpc_devices.end()); | |
| printf("Available devices:\n"); | |
| for (size_t i = 0; i < all_devices.size(); ++i) { | |
| auto * dev = all_devices[i]; | |
| size_t free, total; | |
| ggml_backend_dev_memory(dev, &free, &total); | |
| printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024); | |
| } | |
| exit(0); | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N", | |
| "number of layers to store in VRAM", | |
| [](common_params & params, int value) { | |
| params.n_gpu_layers = value; | |
| if (!llama_supports_gpu_offload()) { | |
| fprintf(stderr, "warning: no usable GPU found, --gpu-layers option will be ignored\n"); | |
| fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n"); | |
| fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n"); | |
| } | |
| } | |
| ).set_env("LLAMA_ARG_N_GPU_LAYERS")); | |
| add_opt(common_arg( | |
| {"-sm", "--split-mode"}, "{none,layer,row}", | |
| "how to split the model across multiple GPUs, one of:\n" | |
| "- none: use one GPU only\n" | |
| "- layer (default): split layers and KV across GPUs\n" | |
| "- row: split rows across GPUs", | |
| [](common_params & params, const std::string & value) { | |
| std::string arg_next = value; | |
| if (arg_next == "none") { | |
| params.split_mode = LLAMA_SPLIT_MODE_NONE; | |
| } else if (arg_next == "layer") { | |
| params.split_mode = LLAMA_SPLIT_MODE_LAYER; | |
| } else if (arg_next == "row") { | |
| params.split_mode = LLAMA_SPLIT_MODE_ROW; | |
| } else { | |
| throw std::invalid_argument("invalid value"); | |
| } | |
| if (!llama_supports_gpu_offload()) { | |
| fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n"); | |
| } | |
| } | |
| ).set_env("LLAMA_ARG_SPLIT_MODE")); | |
| add_opt(common_arg( | |
| {"-ts", "--tensor-split"}, "N0,N1,N2,...", | |
| "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1", | |
| [](common_params & params, const std::string & value) { | |
| std::string arg_next = value; | |
| // split string by , and / | |
| const std::regex regex{ R"([,/]+)" }; | |
| std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 }; | |
| std::vector<std::string> split_arg{ it, {} }; | |
| if (split_arg.size() >= llama_max_devices()) { | |
| throw std::invalid_argument( | |
| string_format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices()) | |
| ); | |
| } | |
| for (size_t i = 0; i < llama_max_devices(); ++i) { | |
| if (i < split_arg.size()) { | |
| params.tensor_split[i] = std::stof(split_arg[i]); | |
| } else { | |
| params.tensor_split[i] = 0.0f; | |
| } | |
| } | |
| if (!llama_supports_gpu_offload()) { | |
| fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n"); | |
| } | |
| } | |
| ).set_env("LLAMA_ARG_TENSOR_SPLIT")); | |
| add_opt(common_arg( | |
| {"-mg", "--main-gpu"}, "INDEX", | |
| string_format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu), | |
| [](common_params & params, int value) { | |
| params.main_gpu = value; | |
| if (!llama_supports_gpu_offload()) { | |
| fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n"); | |
| } | |
| } | |
| ).set_env("LLAMA_ARG_MAIN_GPU")); | |
| add_opt(common_arg( | |
| {"--check-tensors"}, | |
| string_format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"), | |
| [](common_params & params) { | |
| params.check_tensors = true; | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"--override-kv"}, "KEY=TYPE:VALUE", | |
| "advanced option to override model metadata by key. may be specified multiple times.\n" | |
| "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false", | |
| [](common_params & params, const std::string & value) { | |
| if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) { | |
| throw std::runtime_error(string_format("error: Invalid type for KV override: %s\n", value.c_str())); | |
| } | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"--lora"}, "FNAME", | |
| "path to LoRA adapter (can be repeated to use multiple adapters)", | |
| [](common_params & params, const std::string & value) { | |
| params.lora_adapters.push_back({ std::string(value), 1.0, nullptr }); | |
| } | |
| // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg | |
| ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA})); | |
| add_opt(common_arg( | |
| {"--lora-scaled"}, "FNAME", "SCALE", | |
| "path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)", | |
| [](common_params & params, const std::string & fname, const std::string & scale) { | |
| params.lora_adapters.push_back({ fname, std::stof(scale), nullptr }); | |
| } | |
| // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg | |
| ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA})); | |
| add_opt(common_arg( | |
| {"--control-vector"}, "FNAME", | |
| "add a control vector\nnote: this argument can be repeated to add multiple control vectors", | |
| [](common_params & params, const std::string & value) { | |
| params.control_vectors.push_back({ 1.0f, value, }); | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"--control-vector-scaled"}, "FNAME", "SCALE", | |
| "add a control vector with user defined scaling SCALE\n" | |
| "note: this argument can be repeated to add multiple scaled control vectors", | |
| [](common_params & params, const std::string & fname, const std::string & scale) { | |
| params.control_vectors.push_back({ std::stof(scale), fname }); | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"--control-vector-layer-range"}, "START", "END", | |
| "layer range to apply the control vector(s) to, start and end inclusive", | |
| [](common_params & params, const std::string & start, const std::string & end) { | |
| params.control_vector_layer_start = std::stoi(start); | |
| params.control_vector_layer_end = std::stoi(end); | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"-a", "--alias"}, "STRING", | |
| "set alias for model name (to be used by REST API)", | |
| [](common_params & params, const std::string & value) { | |
| params.model_alias = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS")); | |
| add_opt(common_arg( | |
| {"-m", "--model"}, "FNAME", | |
| ex == LLAMA_EXAMPLE_EXPORT_LORA | |
| ? std::string("model path from which to load base model") | |
| : string_format( | |
| "model path (default: `models/$filename` with filename from `--hf-file` " | |
| "or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH | |
| ), | |
| [](common_params & params, const std::string & value) { | |
| params.model = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL")); | |
| add_opt(common_arg( | |
| {"-mu", "--model-url"}, "MODEL_URL", | |
| "model download url (default: unused)", | |
| [](common_params & params, const std::string & value) { | |
| params.model_url = value; | |
| } | |
| ).set_env("LLAMA_ARG_MODEL_URL")); | |
| add_opt(common_arg( | |
| {"-hf", "-hfr", "--hf-repo"}, "<user>/<model>[:quant]", | |
| "Hugging Face model repository; quant is optional, case-insensitive, default to Q4_K_M, or falls back to the first file in the repo if Q4_K_M doesn't exist.\n" | |
| "example: unsloth/phi-4-GGUF:q4_k_m\n" | |
| "(default: unused)", | |
| [](common_params & params, const std::string & value) { | |
| params.hf_repo = value; | |
| } | |
| ).set_env("LLAMA_ARG_HF_REPO")); | |
| add_opt(common_arg( | |
| {"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]", | |
| "Same as --hf-repo, but for the draft model (default: unused)", | |
| [](common_params & params, const std::string & value) { | |
| params.speculative.hf_repo = value; | |
| } | |
| ).set_env("LLAMA_ARG_HFD_REPO")); | |
| add_opt(common_arg( | |
| {"-hff", "--hf-file"}, "FILE", | |
| "Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)", | |
| [](common_params & params, const std::string & value) { | |
| params.hf_file = value; | |
| } | |
| ).set_env("LLAMA_ARG_HF_FILE")); | |
| add_opt(common_arg( | |
| {"-hfv", "-hfrv", "--hf-repo-v"}, "<user>/<model>[:quant]", | |
| "Hugging Face model repository for the vocoder model (default: unused)", | |
| [](common_params & params, const std::string & value) { | |
| params.vocoder.hf_repo = value; | |
| } | |
| ).set_env("LLAMA_ARG_HF_REPO_V")); | |
| add_opt(common_arg( | |
| {"-hffv", "--hf-file-v"}, "FILE", | |
| "Hugging Face model file for the vocoder model (default: unused)", | |
| [](common_params & params, const std::string & value) { | |
| params.vocoder.hf_file = value; | |
| } | |
| ).set_env("LLAMA_ARG_HF_FILE_V")); | |
| add_opt(common_arg( | |
| {"-hft", "--hf-token"}, "TOKEN", | |
| "Hugging Face access token (default: value from HF_TOKEN environment variable)", | |
| [](common_params & params, const std::string & value) { | |
| params.hf_token = value; | |
| } | |
| ).set_env("HF_TOKEN")); | |
| add_opt(common_arg( | |
| {"--context-file"}, "FNAME", | |
| "file to load context from (repeat to specify multiple files)", | |
| [](common_params & params, const std::string & value) { | |
| std::ifstream file(value, std::ios::binary); | |
| if (!file) { | |
| throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); | |
| } | |
| params.context_files.push_back(value); | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_RETRIEVAL})); | |
| add_opt(common_arg( | |
| {"--chunk-size"}, "N", | |
| string_format("minimum length of embedded text chunks (default: %d)", params.chunk_size), | |
| [](common_params & params, int value) { | |
| params.chunk_size = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_RETRIEVAL})); | |
| add_opt(common_arg( | |
| {"--chunk-separator"}, "STRING", | |
| string_format("separator between chunks (default: '%s')", params.chunk_separator.c_str()), | |
| [](common_params & params, const std::string & value) { | |
| params.chunk_separator = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_RETRIEVAL})); | |
| add_opt(common_arg( | |
| {"--junk"}, "N", | |
| string_format("number of times to repeat the junk text (default: %d)", params.n_junk), | |
| [](common_params & params, int value) { | |
| params.n_junk = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_PASSKEY})); | |
| add_opt(common_arg( | |
| {"--pos"}, "N", | |
| string_format("position of the passkey in the junk text (default: %d)", params.i_pos), | |
| [](common_params & params, int value) { | |
| params.i_pos = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_PASSKEY})); | |
| add_opt(common_arg( | |
| {"-o", "--output", "--output-file"}, "FNAME", | |
| string_format("output file (default: '%s')", | |
| ex == LLAMA_EXAMPLE_EXPORT_LORA | |
| ? params.lora_outfile.c_str() | |
| : ex == LLAMA_EXAMPLE_CVECTOR_GENERATOR | |
| ? params.cvector_outfile.c_str() | |
| : params.out_file.c_str()), | |
| [](common_params & params, const std::string & value) { | |
| params.out_file = value; | |
| params.cvector_outfile = value; | |
| params.lora_outfile = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA})); | |
| add_opt(common_arg( | |
| {"-ofreq", "--output-frequency"}, "N", | |
| string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq), | |
| [](common_params & params, int value) { | |
| params.n_out_freq = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_IMATRIX})); | |
| add_opt(common_arg( | |
| {"--save-frequency"}, "N", | |
| string_format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq), | |
| [](common_params & params, int value) { | |
| params.n_save_freq = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_IMATRIX})); | |
| add_opt(common_arg( | |
| {"--process-output"}, | |
| string_format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"), | |
| [](common_params & params) { | |
| params.process_output = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_IMATRIX})); | |
| add_opt(common_arg( | |
| {"--no-ppl"}, | |
| string_format("do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"), | |
| [](common_params & params) { | |
| params.compute_ppl = false; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_IMATRIX})); | |
| add_opt(common_arg( | |
| {"--chunk", "--from-chunk"}, "N", | |
| string_format("start processing the input from chunk N (default: %d)", params.i_chunk), | |
| [](common_params & params, int value) { | |
| params.i_chunk = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_IMATRIX})); | |
| add_opt(common_arg( | |
| {"-pps"}, | |
| string_format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"), | |
| [](common_params & params) { | |
| params.is_pp_shared = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_BENCH})); | |
| add_opt(common_arg( | |
| {"-npp"}, "n0,n1,...", | |
| "number of prompt tokens", | |
| [](common_params & params, const std::string & value) { | |
| auto p = string_split<int>(value, ','); | |
| params.n_pp.insert(params.n_pp.end(), p.begin(), p.end()); | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_BENCH})); | |
| add_opt(common_arg( | |
| {"-ntg"}, "n0,n1,...", | |
| "number of text generation tokens", | |
| [](common_params & params, const std::string & value) { | |
| auto p = string_split<int>(value, ','); | |
| params.n_tg.insert(params.n_tg.end(), p.begin(), p.end()); | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_BENCH})); | |
| add_opt(common_arg( | |
| {"-npl"}, "n0,n1,...", | |
| "number of parallel prompts", | |
| [](common_params & params, const std::string & value) { | |
| auto p = string_split<int>(value, ','); | |
| params.n_pl.insert(params.n_pl.end(), p.begin(), p.end()); | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_BENCH})); | |
| add_opt(common_arg( | |
| {"--embd-normalize"}, "N", | |
| string_format("normalisation for embeddings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize), | |
| [](common_params & params, int value) { | |
| params.embd_normalize = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_EMBEDDING})); | |
| add_opt(common_arg( | |
| {"--embd-output-format"}, "FORMAT", | |
| "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix", | |
| [](common_params & params, const std::string & value) { | |
| params.embd_out = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_EMBEDDING})); | |
| add_opt(common_arg( | |
| {"--embd-separator"}, "STRING", | |
| "separator of embeddings (default \\n) for example \"<#sep#>\"", | |
| [](common_params & params, const std::string & value) { | |
| params.embd_sep = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_EMBEDDING})); | |
| add_opt(common_arg( | |
| {"--host"}, "HOST", | |
| string_format("ip address to listen (default: %s)", params.hostname.c_str()), | |
| [](common_params & params, const std::string & value) { | |
| params.hostname = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST")); | |
| add_opt(common_arg( | |
| {"--port"}, "PORT", | |
| string_format("port to listen (default: %d)", params.port), | |
| [](common_params & params, int value) { | |
| params.port = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT")); | |
| add_opt(common_arg( | |
| {"--path"}, "PATH", | |
| string_format("path to serve static files from (default: %s)", params.public_path.c_str()), | |
| [](common_params & params, const std::string & value) { | |
| params.public_path = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH")); | |
| add_opt(common_arg( | |
| {"--no-webui"}, | |
| string_format("Disable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"), | |
| [](common_params & params) { | |
| params.webui = false; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_WEBUI")); | |
| add_opt(common_arg( | |
| {"--embedding", "--embeddings"}, | |
| string_format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"), | |
| [](common_params & params) { | |
| params.embedding = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS")); | |
| add_opt(common_arg( | |
| {"--reranking", "--rerank"}, | |
| string_format("enable reranking endpoint on server (default: %s)", params.reranking ? "enabled" : "disabled"), | |
| [](common_params & params) { | |
| params.reranking = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING")); | |
| add_opt(common_arg( | |
| {"--api-key"}, "KEY", | |
| "API key to use for authentication (default: none)", | |
| [](common_params & params, const std::string & value) { | |
| params.api_keys.push_back(value); | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY")); | |
| add_opt(common_arg( | |
| {"--api-key-file"}, "FNAME", | |
| "path to file containing API keys (default: none)", | |
| [](common_params & params, const std::string & value) { | |
| std::ifstream key_file(value); | |
| if (!key_file) { | |
| throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); | |
| } | |
| std::string key; | |
| while (std::getline(key_file, key)) { | |
| if (!key.empty()) { | |
| params.api_keys.push_back(key); | |
| } | |
| } | |
| key_file.close(); | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER})); | |
| add_opt(common_arg( | |
| {"--ssl-key-file"}, "FNAME", | |
| "path to file a PEM-encoded SSL private key", | |
| [](common_params & params, const std::string & value) { | |
| params.ssl_file_key = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE")); | |
| add_opt(common_arg( | |
| {"--ssl-cert-file"}, "FNAME", | |
| "path to file a PEM-encoded SSL certificate", | |
| [](common_params & params, const std::string & value) { | |
| params.ssl_file_cert = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE")); | |
| add_opt(common_arg( | |
| {"-to", "--timeout"}, "N", | |
| string_format("server read/write timeout in seconds (default: %d)", params.timeout_read), | |
| [](common_params & params, int value) { | |
| params.timeout_read = value; | |
| params.timeout_write = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT")); | |
| add_opt(common_arg( | |
| {"--threads-http"}, "N", | |
| string_format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http), | |
| [](common_params & params, int value) { | |
| params.n_threads_http = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP")); | |
| add_opt(common_arg( | |
| {"--cache-reuse"}, "N", | |
| string_format("min chunk size to attempt reusing from the cache via KV shifting (default: %d)", params.n_cache_reuse), | |
| [](common_params & params, int value) { | |
| params.n_cache_reuse = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CACHE_REUSE")); | |
| add_opt(common_arg( | |
| {"--metrics"}, | |
| string_format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"), | |
| [](common_params & params) { | |
| params.endpoint_metrics = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS")); | |
| add_opt(common_arg( | |
| {"--slots"}, | |
| string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"), | |
| [](common_params & params) { | |
| params.endpoint_slots = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS")); | |
| add_opt(common_arg( | |
| {"--props"}, | |
| string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"), | |
| [](common_params & params) { | |
| params.endpoint_props = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS")); | |
| add_opt(common_arg( | |
| {"--no-slots"}, | |
| "disables slots monitoring endpoint", | |
| [](common_params & params) { | |
| params.endpoint_slots = false; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_ENDPOINT_SLOTS")); | |
| add_opt(common_arg( | |
| {"--slot-save-path"}, "PATH", | |
| "path to save slot kv cache (default: disabled)", | |
| [](common_params & params, const std::string & value) { | |
| params.slot_save_path = value; | |
| // if doesn't end with DIRECTORY_SEPARATOR, add it | |
| if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) { | |
| params.slot_save_path += DIRECTORY_SEPARATOR; | |
| } | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER})); | |
| add_opt(common_arg( | |
| {"--jinja"}, | |
| "use jinja template for chat (default: disabled)", | |
| [](common_params & params) { | |
| params.use_jinja = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_JINJA")); | |
| add_opt(common_arg( | |
| {"--chat-template"}, "JINJA_TEMPLATE", | |
| string_format( | |
| "set custom jinja chat template (default: template taken from model's metadata)\n" | |
| "if suffix/prefix are specified, template will be disabled\n" | |
| "only commonly used templates are accepted (unless --jinja is set before this flag):\n" | |
| "list of built-in templates:\n%s", list_builtin_chat_templates().c_str() | |
| ), | |
| [](common_params & params, const std::string & value) { | |
| params.chat_template = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE")); | |
| add_opt(common_arg( | |
| {"--chat-template-file"}, "JINJA_TEMPLATE_FILE", | |
| string_format( | |
| "set custom jinja chat template file (default: template taken from model's metadata)\n" | |
| "if suffix/prefix are specified, template will be disabled\n" | |
| "only commonly used templates are accepted (unless --jinja is set before this flag):\n" | |
| "list of built-in templates:\n%s", list_builtin_chat_templates().c_str() | |
| ), | |
| [](common_params & params, const std::string & value) { | |
| std::ifstream file(value); | |
| if (!file) { | |
| throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); | |
| } | |
| std::copy( | |
| std::istreambuf_iterator<char>(file), | |
| std::istreambuf_iterator<char>(), | |
| std::back_inserter(params.chat_template)); | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE")); | |
| add_opt(common_arg( | |
| {"-sps", "--slot-prompt-similarity"}, "SIMILARITY", | |
| string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity), | |
| [](common_params & params, const std::string & value) { | |
| params.slot_prompt_similarity = std::stof(value); | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER})); | |
| add_opt(common_arg( | |
| {"--lora-init-without-apply"}, | |
| string_format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"), | |
| [](common_params & params) { | |
| params.lora_init_without_apply = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SERVER})); | |
| add_opt(common_arg( | |
| {"--simple-io"}, | |
| "use basic IO for better compatibility in subprocesses and limited consoles", | |
| [](common_params & params) { | |
| params.simple_io = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL})); | |
| add_opt(common_arg( | |
| {"--positive-file"}, "FNAME", | |
| string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()), | |
| [](common_params & params, const std::string & value) { | |
| params.cvector_positive_file = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); | |
| add_opt(common_arg( | |
| {"--negative-file"}, "FNAME", | |
| string_format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()), | |
| [](common_params & params, const std::string & value) { | |
| params.cvector_negative_file = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); | |
| add_opt(common_arg( | |
| {"--pca-batch"}, "N", | |
| string_format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch), | |
| [](common_params & params, int value) { | |
| params.n_pca_batch = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); | |
| add_opt(common_arg( | |
| {"--pca-iter"}, "N", | |
| string_format("number of iterations used for PCA (default: %d)", params.n_pca_iterations), | |
| [](common_params & params, int value) { | |
| params.n_pca_iterations = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); | |
| add_opt(common_arg( | |
| {"--method"}, "{pca, mean}", | |
| "dimensionality reduction method to be used (default: pca)", | |
| [](common_params & params, const std::string & value) { | |
| /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; } | |
| else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; } | |
| else { throw std::invalid_argument("invalid value"); } | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); | |
| add_opt(common_arg( | |
| {"--output-format"}, "{md,jsonl}", | |
| "output format for batched-bench results (default: md)", | |
| [](common_params & params, const std::string & value) { | |
| /**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; } | |
| else if (value == "md") { params.batched_bench_output_jsonl = false; } | |
| else { std::invalid_argument("invalid value"); } | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_BENCH})); | |
| add_opt(common_arg( | |
| {"--log-disable"}, | |
| "Log disable", | |
| [](common_params &) { | |
| common_log_pause(common_log_main()); | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"--log-file"}, "FNAME", | |
| "Log to file", | |
| [](common_params &, const std::string & value) { | |
| common_log_set_file(common_log_main(), value.c_str()); | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"--log-colors"}, | |
| "Enable colored logging", | |
| [](common_params &) { | |
| common_log_set_colors(common_log_main(), true); | |
| } | |
| ).set_env("LLAMA_LOG_COLORS")); | |
| add_opt(common_arg( | |
| {"-v", "--verbose", "--log-verbose"}, | |
| "Set verbosity level to infinity (i.e. log all messages, useful for debugging)", | |
| [](common_params & params) { | |
| params.verbosity = INT_MAX; | |
| common_log_set_verbosity_thold(INT_MAX); | |
| } | |
| )); | |
| add_opt(common_arg( | |
| {"-lv", "--verbosity", "--log-verbosity"}, "N", | |
| "Set the verbosity threshold. Messages with a higher verbosity will be ignored.", | |
| [](common_params & params, int value) { | |
| params.verbosity = value; | |
| common_log_set_verbosity_thold(value); | |
| } | |
| ).set_env("LLAMA_LOG_VERBOSITY")); | |
| add_opt(common_arg( | |
| {"--log-prefix"}, | |
| "Enable prefx in log messages", | |
| [](common_params &) { | |
| common_log_set_prefix(common_log_main(), true); | |
| } | |
| ).set_env("LLAMA_LOG_PREFIX")); | |
| add_opt(common_arg( | |
| {"--log-timestamps"}, | |
| "Enable timestamps in log messages", | |
| [](common_params &) { | |
| common_log_set_timestamps(common_log_main(), true); | |
| } | |
| ).set_env("LLAMA_LOG_TIMESTAMPS")); | |
| // speculative parameters | |
| add_opt(common_arg( | |
| {"-td", "--threads-draft"}, "N", | |
| "number of threads to use during generation (default: same as --threads)", | |
| [](common_params & params, int value) { | |
| params.speculative.cpuparams.n_threads = value; | |
| if (params.speculative.cpuparams.n_threads <= 0) { | |
| params.speculative.cpuparams.n_threads = std::thread::hardware_concurrency(); | |
| } | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
| add_opt(common_arg( | |
| {"-tbd", "--threads-batch-draft"}, "N", | |
| "number of threads to use during batch and prompt processing (default: same as --threads-draft)", | |
| [](common_params & params, int value) { | |
| params.speculative.cpuparams_batch.n_threads = value; | |
| if (params.speculative.cpuparams_batch.n_threads <= 0) { | |
| params.speculative.cpuparams_batch.n_threads = std::thread::hardware_concurrency(); | |
| } | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
| add_opt(common_arg( | |
| {"-Cd", "--cpu-mask-draft"}, "M", | |
| "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)", | |
| [](common_params & params, const std::string & mask) { | |
| params.speculative.cpuparams.mask_valid = true; | |
| if (!parse_cpu_mask(mask, params.speculative.cpuparams.cpumask)) { | |
| throw std::invalid_argument("invalid cpumask"); | |
| } | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
| add_opt(common_arg( | |
| {"-Crd", "--cpu-range-draft"}, "lo-hi", | |
| "Ranges of CPUs for affinity. Complements --cpu-mask-draft", | |
| [](common_params & params, const std::string & range) { | |
| params.speculative.cpuparams.mask_valid = true; | |
| if (!parse_cpu_range(range, params.speculative.cpuparams.cpumask)) { | |
| throw std::invalid_argument("invalid range"); | |
| } | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
| add_opt(common_arg( | |
| {"--cpu-strict-draft"}, "<0|1>", | |
| "Use strict CPU placement for draft model (default: same as --cpu-strict)", | |
| [](common_params & params, int value) { | |
| params.speculative.cpuparams.strict_cpu = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
| add_opt(common_arg( | |
| {"--prio-draft"}, "N", | |
| string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams.priority), | |
| [](common_params & params, int prio) { | |
| if (prio < 0 || prio > 3) { | |
| throw std::invalid_argument("invalid value"); | |
| } | |
| params.speculative.cpuparams.priority = (enum ggml_sched_priority) prio; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
| add_opt(common_arg( | |
| {"--poll-draft"}, "<0|1>", | |
| "Use polling to wait for draft model work (default: same as --poll])", | |
| [](common_params & params, int value) { | |
| params.speculative.cpuparams.poll = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
| add_opt(common_arg( | |
| {"-Cbd", "--cpu-mask-batch-draft"}, "M", | |
| "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)", | |
| [](common_params & params, const std::string & mask) { | |
| params.speculative.cpuparams_batch.mask_valid = true; | |
| if (!parse_cpu_mask(mask, params.speculative.cpuparams_batch.cpumask)) { | |
| throw std::invalid_argument("invalid cpumask"); | |
| } | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
| add_opt(common_arg( | |
| {"-Crbd", "--cpu-range-batch-draft"}, "lo-hi", | |
| "Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)", | |
| [](common_params & params, const std::string & range) { | |
| params.speculative.cpuparams_batch.mask_valid = true; | |
| if (!parse_cpu_range(range, params.speculative.cpuparams_batch.cpumask)) { | |
| throw std::invalid_argument("invalid cpumask"); | |
| } | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
| add_opt(common_arg( | |
| {"--cpu-strict-batch-draft"}, "<0|1>", | |
| "Use strict CPU placement for draft model (default: --cpu-strict-draft)", | |
| [](common_params & params, int value) { | |
| params.speculative.cpuparams_batch.strict_cpu = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
| add_opt(common_arg( | |
| {"--prio-batch-draft"}, "N", | |
| string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams_batch.priority), | |
| [](common_params & params, int prio) { | |
| if (prio < 0 || prio > 3) { | |
| throw std::invalid_argument("invalid value"); | |
| } | |
| params.speculative.cpuparams_batch.priority = (enum ggml_sched_priority) prio; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
| add_opt(common_arg( | |
| {"--poll-batch-draft"}, "<0|1>", | |
| "Use polling to wait for draft model work (default: --poll-draft)", | |
| [](common_params & params, int value) { | |
| params.speculative.cpuparams_batch.poll = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
| add_opt(common_arg( | |
| {"--draft-max", "--draft", "--draft-n"}, "N", | |
| string_format("number of tokens to draft for speculative decoding (default: %d)", params.speculative.n_max), | |
| [](common_params & params, int value) { | |
| params.speculative.n_max = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MAX")); | |
| add_opt(common_arg( | |
| {"--draft-min", "--draft-n-min"}, "N", | |
| string_format("minimum number of draft tokens to use for speculative decoding (default: %d)", params.speculative.n_min), | |
| [](common_params & params, int value) { | |
| params.speculative.n_min = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MIN")); | |
| add_opt(common_arg( | |
| {"--draft-p-split"}, "P", | |
| string_format("speculative decoding split probability (default: %.1f)", (double)params.speculative.p_split), | |
| [](common_params & params, const std::string & value) { | |
| params.speculative.p_split = std::stof(value); | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}).set_env("LLAMA_ARG_DRAFT_P_SPLIT")); | |
| add_opt(common_arg( | |
| {"--draft-p-min"}, "P", | |
| string_format("minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.speculative.p_min), | |
| [](common_params & params, const std::string & value) { | |
| params.speculative.p_min = std::stof(value); | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_P_MIN")); | |
| add_opt(common_arg( | |
| {"-cd", "--ctx-size-draft"}, "N", | |
| string_format("size of the prompt context for the draft model (default: %d, 0 = loaded from model)", params.speculative.n_ctx), | |
| [](common_params & params, int value) { | |
| params.speculative.n_ctx = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CTX_SIZE_DRAFT")); | |
| add_opt(common_arg( | |
| {"-devd", "--device-draft"}, "<dev1,dev2,..>", | |
| "comma-separated list of devices to use for offloading the draft model (none = don't offload)\n" | |
| "use --list-devices to see a list of available devices", | |
| [](common_params & params, const std::string & value) { | |
| params.speculative.devices = parse_device_list(value); | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER})); | |
| add_opt(common_arg( | |
| {"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N", | |
| "number of layers to store in VRAM for the draft model", | |
| [](common_params & params, int value) { | |
| params.speculative.n_gpu_layers = value; | |
| if (!llama_supports_gpu_offload()) { | |
| fprintf(stderr, "warning: no usable GPU found, --gpu-layers-draft option will be ignored\n"); | |
| fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n"); | |
| fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n"); | |
| } | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_GPU_LAYERS_DRAFT")); | |
| add_opt(common_arg( | |
| {"-md", "--model-draft"}, "FNAME", | |
| "draft model for speculative decoding (default: unused)", | |
| [](common_params & params, const std::string & value) { | |
| params.speculative.model = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT")); | |
| add_opt(common_arg( | |
| {"-mv", "--model-vocoder"}, "FNAME", | |
| "vocoder model for audio generation (default: unused)", | |
| [](common_params & params, const std::string & value) { | |
| params.vocoder.model = value; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER})); | |
| add_opt(common_arg( | |
| {"--tts-use-guide-tokens"}, | |
| "Use guide tokens to improve TTS word recall", | |
| [](common_params & params) { | |
| params.vocoder.use_guide_tokens = true; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER})); | |
| // model-specific | |
| add_opt(common_arg( | |
| {"--tts-oute-default"}, | |
| string_format("use default OuteTTS models (note: can download weights from the internet)"), | |
| [](common_params & params) { | |
| params.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF"; | |
| params.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf"; | |
| params.vocoder.hf_repo = "ggml-org/WavTokenizer"; | |
| params.vocoder.hf_file = "WavTokenizer-Large-75-F16.gguf"; | |
| } | |
| ).set_examples({LLAMA_EXAMPLE_TTS})); | |
| return ctx_arg; | |
| } | |