File size: 20,410 Bytes
46a8a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
"""
pdf text and asset extraction
"""

import json
import random
import re
from pathlib import Path
from typing import Dict, Any, Tuple

from marker.converters.pdf import PdfConverter
from marker.renderers.markdown import MarkdownRenderer
from marker.models import create_model_dict
from marker.output import text_from_rendered
from marker.schema import BlockTypes
from jinja2 import Template

from src.state.poster_state import PosterState
from utils.langgraph_utils import LangGraphAgent, extract_json, load_prompt
from utils.src.logging_utils import log_agent_info, log_agent_success, log_agent_error, log_agent_warning
from src.config.poster_config import load_config


class Parser:
    def __init__(self):
        self.name = "parser"
        config_data = load_config()
        batch_config = config_data["pdf_processing"]["batch_sizes"]
        config = {
            "recognition_batch_size": batch_config["recognition"],
            "layout_batch_size": batch_config["layout"],
            "detection_batch_size": batch_config["detection"], 
            "table_rec_batch_size": batch_config["table_rec"],
            "ocr_error_batch_size": batch_config["ocr_error"],
            "equation_batch_size": batch_config["equation"],
            "disable_tqdm": False,
        }
        
        self.converter = PdfConverter(artifact_dict=create_model_dict(), config=config)
        self.clean_pattern = re.compile(r"<!--[\s\S]*?-->")
        self.enhanced_abt_prompt = load_prompt("config/prompts/narrative_abt_extraction.txt")
        self.visual_classification_prompt = load_prompt("config/prompts/classify_visuals.txt")
        self.title_authors_prompt = load_prompt("config/prompts/extract_title_authors.txt")
        self.section_extraction_prompt = load_prompt("config/prompts/extract_structured_sections.txt")
    
    def __call__(self, state: PosterState) -> PosterState:
        log_agent_info(self.name, "starting foundation building")
        
        try:
            output_dir = Path(state["output_dir"])
            content_dir = output_dir / "content"
            assets_dir = output_dir / "assets"
            content_dir.mkdir(parents=True, exist_ok=True)
            assets_dir.mkdir(parents=True, exist_ok=True)
            
            # extract raw text and assets
            raw_text, raw_result = self._extract_raw_text(state["pdf_path"], content_dir)

            figures, tables = self._extract_assets(raw_result, state["poster_name"], assets_dir)
            
            # extract title and authors from raw text
            title, authors = self._extract_title_authors(raw_text, state["text_model"])
            
            # generate narrative content
            narrative_content, inp_tok, out_tok = self._generate_narrative_content(raw_text, state["text_model"])
            state["tokens"].add_text(inp_tok, out_tok)
            
            # classify visual assets by importance
            classified_visuals, inp_tok2, out_tok2 = self._classify_visual_assets(figures, tables, raw_text, state["text_model"])
            state["tokens"].add_text(inp_tok2, out_tok2)
            
            # narrative metadata
            narrative_content["meta"] = {
                "poster_title": title,
                "authors": authors
            }
            
            # extract structured sections from raw text
            structured_sections = self._extract_structured_sections(raw_text, state["text_model"])
            
            # save artifacts and update state
            self._save_content(narrative_content, "narrative_content.json", content_dir)
            self._save_content(classified_visuals, "classified_visuals.json", content_dir)
            self._save_content(structured_sections, "structured_sections.json", content_dir)
            self._save_raw_text(raw_text, content_dir)
            
            state["raw_text"] = raw_text
            state["structured_sections"] = structured_sections
            state["narrative_content"] = narrative_content
            state["classified_visuals"] = classified_visuals
            state["images"] = figures
            state["tables"] = tables
            state["current_agent"] = self.name
            
            log_agent_success(self.name, f"extracted raw text, {len(figures)} images, and {len(tables)} tables")
            log_agent_success(self.name, f"extracted title: {title}")
            log_agent_success(self.name, "generated enhanced abt narrative")
            log_agent_success(self.name, f"classified visuals: key={classified_visuals.get('key_visual', 'none')}, problem_ill={len(classified_visuals.get('problem_illustration', []))}, method_wf={len(classified_visuals.get('method_workflow', []))}, main_res={len(classified_visuals.get('main_results', []))}, comp_res={len(classified_visuals.get('comparative_results', []))}, support={len(classified_visuals.get('supporting', []))}")
            
        except Exception as e:
            log_agent_error(self.name, f"failed: {e}")
            state["errors"].append(str(e))
        
        return state
    
    def _extract_raw_text(self, pdf_path: str, content_dir: Path) -> Tuple[str, Any]:
        log_agent_info(self.name, "converting pdf to raw text")
        document = self.converter.build_document(pdf_path)
        
        # create renderer and get rendered output from the existing document
        renderer = self.converter.resolve_dependencies(MarkdownRenderer)
        rendered = renderer(document)
        
        text, _, images = text_from_rendered(rendered)
        text = self.clean_pattern.sub("", text)
        
        (content_dir / "raw.md").write_text(text, encoding="utf-8")
        
        log_agent_info(self.name, f"extracted {len(text)} chars")
        
        raw_result = (document, rendered, images)
        return text, raw_result

    def _generate_narrative_content(self, text: str, config) -> Tuple[Dict, int, int]:
        log_agent_info(self.name, "generating abt narrative")
        agent = LangGraphAgent("expert poster design consultant", config)
        
        for attempt in range(3):
            try:
                prompt = Template(self.enhanced_abt_prompt).render(markdown_document=text)
                agent.reset()
                response = agent.step(prompt)
                
                narrative = extract_json(response.content)
                
                if "and" in narrative and "but" in narrative and "therefore" in narrative:
                    return narrative, response.input_tokens, response.output_tokens

            except Exception as e:
                log_agent_warning(self.name, f"attempt {attempt + 1} failed: {e}")
                if attempt == 2:
                    raise

        raise ValueError("failed to generate enhanced narrative after 3 attempts")
    
    def _save_content(self, content: Dict, filename: str, content_dir: Path):
        with open(content_dir / filename, 'w', encoding='utf-8') as f:
            json.dump(content, f, indent=2)
    
    def _save_raw_text(self, raw_text: str, content_dir: Path):
        with open(content_dir / "raw.md", 'w', encoding='utf-8') as f:
            f.write(raw_text)
    
    def _extract_assets(self, result, name: str, assets_dir: Path) -> Tuple[Dict, Dict]:
        log_agent_info(self.name, "extracting assets")
        
        document, rendered, marker_images = result
        
        caption_map = self._extract_captions(document)
        
        figures = {}
        tables = {}
        image_count = 0
        table_count = 0
        
        for img_name, pil_image in marker_images.items():
            caption_info = caption_map.get(img_name, {'captions': [], 'block_type': 'Unknown'})
            
            if 'table' in img_name.lower() or 'Table' in img_name or caption_info.get('block_type') == 'Table':
                table_count += 1
                path = assets_dir / f"table-{table_count}.png"
                pil_image.save(path, "PNG")
                
                tables[str(table_count)] = {
                    'caption': caption_info['captions'][0] if caption_info['captions'] else f"Table {table_count}",
                    'path': str(path),
                    'width': pil_image.width,
                    'height': pil_image.height,
                    'aspect': pil_image.width / pil_image.height if pil_image.height > 0 else 1,
                }
            else:
                image_count += 1
                path = assets_dir / f"figure-{image_count}.png"
                pil_image.save(path, "PNG")
                
                figures[str(image_count)] = {
                    'caption': caption_info['captions'][0] if caption_info['captions'] else f"Figure {image_count}",
                    'path': str(path),
                    'width': pil_image.width,
                    'height': pil_image.height,
                    'aspect': pil_image.width / pil_image.height if pil_image.height > 0 else 1,
                }
        
        with open(assets_dir / "figures.json", 'w', encoding='utf-8') as f:
            json.dump(figures, f, indent=2)
        with open(assets_dir / "tables.json", 'w', encoding='utf-8') as f:
            json.dump(tables, f, indent=2)
        with open(assets_dir / "fig_tab_caption_mapping.json", 'w', encoding='utf-8') as f:
            json.dump(caption_map, f, indent=2, ensure_ascii=False)
        
        return figures, tables

    def _extract_captions(self, document):
        caption_map = {}
        
        for page in document.pages:
            for block_id in page.structure:
                block = page.get_block(block_id)
                
                if block.block_type in [BlockTypes.FigureGroup, BlockTypes.TableGroup, BlockTypes.PictureGroup]:
                    child_blocks = block.structure_blocks(page)
                    figure_or_table = None
                    captions = []
                    
                    for child in child_blocks:
                        child_block = page.get_block(child)
                        if child_block.block_type in [BlockTypes.Figure, BlockTypes.Table, BlockTypes.Picture]:
                            figure_or_table = child_block
                        elif child_block.block_type in [BlockTypes.Caption, BlockTypes.Footnote]:
                            captions.append(child_block.raw_text(document))
                    
                    if figure_or_table:
                        image_filename = f"{figure_or_table.id.to_path()}.jpeg"
                        caption_map[image_filename] = {
                            'block_id': str(figure_or_table.id),
                            'block_type': str(figure_or_table.block_type),
                            'captions': captions,
                            'page': page.page_id
                        }
                
                elif block.block_type in [BlockTypes.Figure, BlockTypes.Table, BlockTypes.Picture]:
                    image_filename = f"{block.id.to_path()}.jpeg"
                    if image_filename not in caption_map:
                        nearby_captions = self._find_nearby_captions(page, block, document)
                        caption_map[image_filename] = {
                            'block_id': str(block.id),
                            'block_type': str(block.block_type),
                            'captions': nearby_captions,
                            'page': page.page_id
                        }
        
        return caption_map

    def _find_nearby_captions(self, page, target_block, document):
        captions = []
        
        # Check all blocks on the page for captions
        for block_id in page.structure:
            block = page.get_block(block_id)
            if block.block_type in [BlockTypes.Caption, BlockTypes.Text]:
                caption_text = block.raw_text(document)
                # Look for figure/table keywords and check if it's nearby
                if any(keyword in caption_text for keyword in ['Figure', 'Table', 'Fig.']):
                    captions.append(caption_text)
        
        # If no captions found, try previous/next blocks
        if not captions:
            for block in [page.get_prev_block(target_block), page.get_next_block(target_block)]:
                if block and block.block_type in [BlockTypes.Caption, BlockTypes.Text]:
                    caption_text = block.raw_text(document)
                    if any(keyword in caption_text for keyword in ['Figure', 'Table', 'Fig.']):
                        captions.append(caption_text)
        
        return captions

    def _cleanup_unused_assets(self, output_dir: Path, name: str, images: Dict, tables: Dict):
        valid_paths = set()
        for img_data in images.values():
            valid_paths.add(Path(img_data['path']).name)
        for table_data in tables.values():
            valid_paths.add(Path(table_data['path']).name)
        
        for png_file in output_dir.glob(f"{name}-*.png"):
            if png_file.name not in valid_paths:
                png_file.unlink()

    def _extract_title_authors(self, text: str, config) -> Tuple[str, str]:
        """extract title and authors via llm api"""
        log_agent_info(self.name, "extracting title and authors with llm")
        agent = LangGraphAgent("expert academic paper parser", config)
        
        for attempt in range(3):
            try:
                prompt = Template(self.title_authors_prompt).render(markdown_document=text)
                agent.reset()
                response = agent.step(prompt)
                
                result = extract_json(response.content)
                
                if "title" in result and "authors" in result:
                    title = result["title"].strip()
                    authors = result["authors"].strip()
                    
                    # validate format
                    if title and authors:
                        return title, authors
                        
            except Exception as e:
                log_agent_warning(self.name, f"title/authors extraction attempt {attempt + 1} failed: {e}")
                if attempt == 2:
                    return "Untitled", "Authors not found"
        
        return "Untitled", "Authors not found"
    
    
    def _classify_visual_assets(self, figures: Dict, tables: Dict, raw_text: str, config) -> Tuple[Dict, int, int]:
        # combine all visuals for classification
        all_visuals = []
        for fig_id, fig_data in figures.items():
            all_visuals.append({
                "id": f"figure_{fig_id}",
                "type": "figure", 
                "caption": fig_data.get("caption", ""),
                "aspect_ratio": fig_data.get("aspect", 1.0)
            })
        
        for tab_id, tab_data in tables.items():
            all_visuals.append({
                "id": f"table_{tab_id}",
                "type": "table",
                "caption": tab_data.get("caption", ""),
                "aspect_ratio": tab_data.get("aspect", 1.0)
            })
        
        if not all_visuals:
            return {"key_visual": None, "problem_illustration": [], "method_workflow": [], "main_results": [], "comparative_results": [], "supporting": []}, 0, 0
            
        log_agent_info(self.name, f"classifying {len(all_visuals)} visual assets")
        agent = LangGraphAgent("expert poster designer", config)
        
        for attempt in range(3):
            try:
                prompt = Template(self.visual_classification_prompt).render(
                    visuals_list=json.dumps(all_visuals, indent=2)
                )
                
                agent.reset()
                response = agent.step(prompt)
                classification = extract_json(response.content)
                
                # validate classification
                required_keys = ["key_visual", "problem_illustration", "method_workflow", "main_results", "comparative_results", "supporting"]
                if all(key in classification for key in required_keys):
                    return classification, response.input_tokens, response.output_tokens
                    
            except Exception as e:
                log_agent_warning(self.name, f"visual classification attempt {attempt + 1} failed: {e}")
                if attempt == 2:
                    # fallback classification
                    return self._fallback_visual_classification(all_visuals), 0, 0
        
        return self._fallback_visual_classification(all_visuals), 0, 0
    
    def _fallback_visual_classification(self, visuals):
        # simple rule-based fallback
        classification = {"key_visual": None, "main_results": [], "method_diagrams": [], "supporting": []}
        
        for visual in visuals:
            caption = visual.get("caption", "").lower()
            if "result" in caption or "performance" in caption or "comparison" in caption:
                classification["main_results"].append(visual["id"])
            elif "method" in caption or "architecture" in caption or "framework" in caption:
                classification["method_diagrams"].append(visual["id"])
            else:
                classification["supporting"].append(visual["id"])
        
        # select key visual from main results or method diagrams
        if classification["main_results"]:
            classification["key_visual"] = classification["main_results"][0]
        elif classification["method_diagrams"]:
            classification["key_visual"] = classification["method_diagrams"][0]
        
        return classification

    def _extract_structured_sections(self, raw_text: str, config) -> Dict:
        """extract structured sections from raw paper text"""
        
        log_agent_info(self.name, "extracting structured sections from paper")
        agent = LangGraphAgent("expert paper section extractor", config)
        
        for attempt in range(3):
            try:
                prompt = Template(self.section_extraction_prompt).render(raw_text=raw_text)
                agent.reset()
                response = agent.step(prompt)
                
                structured_sections = extract_json(response.content)
                
                if self._validate_structured_sections(structured_sections):
                    log_agent_success(self.name, f"extracted {len(structured_sections.get('paper_sections', []))} structured sections")
                    return structured_sections
                else:
                    log_agent_warning(self.name, f"attempt {attempt + 1}: invalid structured sections")
                    
            except Exception as e:
                log_agent_warning(self.name, f"section extraction attempt {attempt + 1} failed: {e}")
                if attempt == 2:
                    raise ValueError("failed to extract structured sections after multiple attempts")

        # fallback empty structure
        return {
            "paper_sections": [],
            "paper_structure": {
                "total_sections": 0,
                "foundation_sections": 0,
                "method_sections": 0,
                "evaluation_sections": 0,
                "conclusion_sections": 0
            }
        }
    
    def _validate_structured_sections(self, structured_sections: Dict) -> bool:
        """validate structured sections format"""
        if "paper_sections" not in structured_sections:
            log_agent_warning(self.name, "validation error: missing 'paper_sections'")
            return False
        
        sections = structured_sections["paper_sections"]
        if not isinstance(sections, list) or len(sections) < 3:
            log_agent_warning(self.name, f"validation error: need at least 3 sections, got {len(sections)}")
            return False
        
        # validate each section
        for i, section in enumerate(sections):
            required_fields = ["section_name", "section_type", "content"]
            for field in required_fields:
                if field not in section:
                    log_agent_warning(self.name, f"validation error: section {i} missing '{field}'")
                    return False
        
        return True


def parser_node(state: PosterState) -> PosterState:
    return Parser()(state)