Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix | |
# Load the dataset | |
df = pd.read_csv('iris.csv') | |
# Prepare data | |
X = df.drop('species', axis=1) | |
y = df['species'] | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) | |
scaler = StandardScaler() | |
X_train = scaler.fit_transform(X_train) | |
X_test = scaler.transform(X_test) | |
# Train the model (only once) | |
logreg = LogisticRegression() | |
logreg.fit(X_train, y_train) | |
# Streamlit app | |
st.title("Iris Flower Classification") | |
st.write("Input the features of the iris flower below:") | |
sepal_length = st.number_input("Sepal Length (cm)", value=5.1) | |
sepal_width = st.number_input("Sepal Width (cm)", value=3.5) | |
petal_length = st.number_input("Petal Length (cm)", value=1.4) | |
petal_width = st.number_input("Petal Width (cm)", value=0.2) | |
if st.button("Predict"): | |
input_data = [[sepal_length, sepal_width, petal_length, petal_width]] | |
input_data = scaler.transform(input_data) | |
prediction = logreg.predict(input_data)[0] | |
st.write(f"Predicted Species: {prediction}") | |