Spaces:
Runtime error
Runtime error
File size: 10,770 Bytes
ebb9c75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
r""" HyperAverageMetercorrelation Squeeze testing code """
import argparse
import sys
import os
from os.path import join
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
import numpy as np
from PIL import Image
from segment_anything import SamPredictor, SamAutomaticMaskGenerator
from gradio_demo.Matcher import Matcher
from matcher.common import utils
import random
random.seed(0)
def default_argument_parser():
# Arguments parsing
parser = argparse.ArgumentParser(description='Matcher Pytorch Implementation for One-shot Segmentation')
# Dataset parameters
parser.add_argument('--datapath', type=str, default='datasets')
parser.add_argument('--benchmark', type=str, default='coco',
choices=['fss', 'coco', 'lvis', 'paco_part', 'pascal_part'])
parser.add_argument('--bsz', type=int, default=1)
parser.add_argument('--nworker', type=int, default=0)
parser.add_argument('--fold', type=int, default=0)
parser.add_argument('--nshot', type=int, default=1)
parser.add_argument('--img-size', type=int, default=518)
parser.add_argument('--use_original_imgsize', action='store_true')
parser.add_argument('--log-root', type=str, default='output/coco/fold0')
parser.add_argument('--visualize', type=int, default=0)
# DINOv2 and SAM parameters
parser.add_argument('--dinov2-weights', type=str, default="models/dinov2_vitl14_pretrain.pth")
parser.add_argument('--sam-weights', type=str, default="models/sam_vit_h_4b8939.pth")
parser.add_argument('--points_per_side', type=int, default=64)
parser.add_argument('--pred_iou_thresh', type=float, default=0.88)
parser.add_argument('--sel_stability_score_thresh', type=float, default=0.0)
parser.add_argument('--stability_score_thresh', type=float, default=0.95)
parser.add_argument('--iou_filter', type=float, default=0.0)
parser.add_argument('--box_nms_thresh', type=float, default=1.0)
parser.add_argument('--output_layer', type=int, default=3)
parser.add_argument('--dense_multimask_output', type=int, default=0)
parser.add_argument('--use_dense_mask', type=int, default=0)
parser.add_argument('--multimask_output', type=int, default=0)
# Matcher parameters
parser.add_argument('--num_centers', type=int, default=8, help='K centers for kmeans')
parser.add_argument('--use_box', action='store_true', help='use box as an extra prompt for sam')
parser.add_argument('--use_points_or_centers', action='store_true', help='points:T, center: F')
parser.add_argument('--sample-range', type=tuple, default=(4,6), help='sample points number range')
parser.add_argument('--max_sample_iterations', type=int, default=30)
parser.add_argument('--alpha', type=float, default=1.)
parser.add_argument('--beta', type=float, default=0.)
parser.add_argument('--exp', type=float, default=0.)
parser.add_argument('--emd_filter', type=float, default=0.0, help='use emd_filter')
parser.add_argument('--purity_filter', type=float, default=0.0, help='use purity_filter')
parser.add_argument('--coverage_filter', type=float, default=0.0, help='use coverage_filter')
parser.add_argument('--use_score_filter', action='store_true')
parser.add_argument('--deep_score_norm_filter', type=float, default=0.1)
parser.add_argument('--deep_score_filter', type=float, default=0.33)
parser.add_argument('--topk_scores_threshold', type=float, default=0.7)
parser.add_argument('--num_merging_mask', type=int, default=10, help='topk masks for merging')
args = parser.parse_args()
return args
def definite_argument_parser(args, version=1):
if version==1:
args.max_sample_iterations = 64
args.box_nms_thresh = 0.65
args.sample_range = (1, 6)
args.topk_scores_threshold = 0.0
args.use_dense_mask = 1
args.use_points_or_centers = True
args.purity_filter = 0.02
args.iou_filter = 0.85
args.multimask_output = 1
args.sel_stability_score_thresh = 0.90
args.use_score_filter = True
args.alpha = 1.0
args.beta = 0.
args.exp = 0.
args.num_merging_mask = 9
elif version == 2:
args.max_sample_iterations = 30
args.sample_range = (4, 6)
args.multimask_output = 0
args.alpha = 0.8
args.beta = 0.2
args.exp = 1.
args.num_merging_mask = 10
elif version == 3:
args.max_sample_iterations = 128
args.sample_range = (3, 6)
args.use_box = True
args.use_points_or_centers = True
args.coverage_filter = 0.3
args.alpha = 0.5
args.beta = 0.5
args.exp = 0.
args.num_merging_mask = 5
return args
def preprocess_data(kwargs, args=None):
img_size = args.img_size
transform = transforms.Compose([
transforms.Resize(size=(img_size, img_size)),
transforms.ToTensor()
])
support_img = Image.fromarray(kwargs.get("support_img"))
query_img_1 = Image.fromarray(kwargs.get("query_img_1"))
query_img_2 = Image.fromarray(kwargs.get("query_img_2"))
support_img_ori_size = (support_img.size[1], support_img.size[0]) # H, W
query_img_1_ori_size = (query_img_1.size[1], query_img_1.size[0])
query_img_2_ori_size = (query_img_2.size[1], query_img_2.size[0])
support_img = transform(support_img)
query_img_1 = transform(query_img_1)
query_img_2 = transform(query_img_2)
support_mask = torch.tensor(kwargs.get("support_mask"))
support_mask = F.interpolate(support_mask.unsqueeze(0).float(), support_img.size()[-2:],
mode='nearest') > 0
query_imgs = torch.stack([query_img_1, query_img_2], dim=0)
data = {
"support_img": support_img[None, ...],
"support_mask": support_mask,
"query_imgs": query_imgs,
"support_img_ori_size": support_img_ori_size,
"query_imgs_ori_size": (query_img_1_ori_size, query_img_2_ori_size),
}
return data
def preprocess_support_mask(data, predictor, version=1):
if version == 3:
return data
sup_mask = data['support_mask'].squeeze()
H, W = sup_mask.shape[-2:]
input_points = sup_mask.nonzero().numpy()[:1,::-1]#[:,::-1]
input_label = np.array([1]*len(input_points))
support_img_np = data['support_img'].mul(255).byte()
support_img_np = support_img_np.squeeze().permute(1,2,0).cpu().numpy()
# forward encoder to obtain image feature
predictor.reset_image()
predictor.set_image(support_img_np)
# mask, _, _ = predictor.predict(
# point_coords=input_points,
# point_labels=input_label,
# multimask_output=False #True
# )
mask, _, _ = predictor.predict(
point_coords=input_points,
point_labels=input_label,
multimask_output=True # True
)
predictor.reset_image()
# show_img_point_box_mask(
# support_img_np,
# masks=mask,
# save_path='test1.png',
# mode='mask'
# )
# data['support_mask'] = torch.tensor(mask[:1])[None, ...]
data['support_mask'] = torch.tensor(mask[-1:])[None, ...]
return data
def main_oss_ops(**kwargs):
args = default_argument_parser()
args = definite_argument_parser(args, kwargs.get("version"))
# Model initialization
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
args.device = device
# create sam
sam = kwargs.get("sam")
predictor = SamPredictor(sam)
generator = SamAutomaticMaskGenerator(
sam,
points_per_side=args.points_per_side,
points_per_batch=64,
pred_iou_thresh=args.pred_iou_thresh,
stability_score_thresh=args.stability_score_thresh,
stability_score_offset=1.0,
sel_stability_score_thresh=args.sel_stability_score_thresh,
sel_pred_iou_thresh=args.iou_filter,
box_nms_thresh=args.box_nms_thresh,
sel_output_layer=args.output_layer,
output_layer=args.dense_multimask_output,
dense_pred=args.use_dense_mask,
multimask_output=args.dense_multimask_output > 0,
sel_multimask_output=args.multimask_output > 0,
)
# create dinov2, large
dinov2 = kwargs.get("dinov2")
# create matcher
score_filter_cfg = {
"emd": args.emd_filter,
"purity": args.purity_filter,
"coverage": args.coverage_filter,
"score_filter": args.use_score_filter,
"score": args.deep_score_filter,
"score_norm": args.deep_score_norm_filter,
"topk_scores_threshold": args.topk_scores_threshold
}
matcher = Matcher(
encoder=dinov2,
generator=generator,
num_centers=args.num_centers,
use_box=args.use_box,
use_points_or_centers=args.use_points_or_centers,
sample_range=args.sample_range,
max_sample_iterations=args.max_sample_iterations,
alpha=args.alpha,
beta=args.beta,
exp=args.exp,
score_filter_cfg=score_filter_cfg,
num_merging_mask=args.num_merging_mask,
device=args.device
)
# process data
data = preprocess_data(kwargs, args=args)
data = preprocess_support_mask(data, predictor, version=kwargs.get("version"))
# inference
with torch.no_grad():
utils.fix_randseed(0)
pred_masks, pred_mask_lists = [], []
# support mask
support_img_ori_size = data['support_img_ori_size']
mask = data['support_mask'].to(predictor.model.device).float()
mask = F.interpolate(mask, support_img_ori_size, mode="bilinear", align_corners=False) > 0
mask = mask.squeeze(0).cpu().numpy()
pred_masks.append(mask)
pred_mask_lists.append(None)
for query_img, query_img_ori_size in zip(data['query_imgs'], data['query_imgs_ori_size']):
data['query_img'], data['query_img_ori_size'] = query_img[None, ...], query_img_ori_size
support_imgs, support_masks = data["support_img"].to(matcher.device)[None, ...], data["support_mask"].to(matcher.device) # (1, 1, 3, H, W), (1, 1, H, W)
query_img, query_img_ori_size = data['query_img'].to(matcher.device), data['query_img_ori_size'] # (1, 3, H, W), img_size
# 1. Matcher prepare references and target
matcher.set_reference(support_imgs, support_masks)
matcher.set_target(query_img, query_img_ori_size)
# 2. Predict mask of target
pred_mask, pred_mask_list = matcher.predict()
matcher.clear()
pred_masks.append(pred_mask)
pred_mask_lists.append(pred_mask_list)
return pred_masks, pred_mask_lists
|