File size: 10,770 Bytes
ebb9c75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
r""" HyperAverageMetercorrelation Squeeze testing code """

import argparse
import sys
import os
from os.path import join

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
import numpy as np
from PIL import Image

from segment_anything import SamPredictor, SamAutomaticMaskGenerator

from gradio_demo.Matcher import Matcher
from matcher.common import utils

import random
random.seed(0)


def default_argument_parser():

    # Arguments parsing
    parser = argparse.ArgumentParser(description='Matcher Pytorch Implementation for One-shot Segmentation')

    # Dataset parameters
    parser.add_argument('--datapath', type=str, default='datasets')
    parser.add_argument('--benchmark', type=str, default='coco',
                        choices=['fss', 'coco', 'lvis', 'paco_part', 'pascal_part'])
    parser.add_argument('--bsz', type=int, default=1)
    parser.add_argument('--nworker', type=int, default=0)
    parser.add_argument('--fold', type=int, default=0)
    parser.add_argument('--nshot', type=int, default=1)
    parser.add_argument('--img-size', type=int, default=518)
    parser.add_argument('--use_original_imgsize', action='store_true')
    parser.add_argument('--log-root', type=str, default='output/coco/fold0')
    parser.add_argument('--visualize', type=int, default=0)

    # DINOv2 and SAM parameters
    parser.add_argument('--dinov2-weights', type=str, default="models/dinov2_vitl14_pretrain.pth")
    parser.add_argument('--sam-weights', type=str, default="models/sam_vit_h_4b8939.pth")
    parser.add_argument('--points_per_side', type=int, default=64)
    parser.add_argument('--pred_iou_thresh', type=float, default=0.88)
    parser.add_argument('--sel_stability_score_thresh', type=float, default=0.0)
    parser.add_argument('--stability_score_thresh', type=float, default=0.95)
    parser.add_argument('--iou_filter', type=float, default=0.0)
    parser.add_argument('--box_nms_thresh', type=float, default=1.0)
    parser.add_argument('--output_layer', type=int, default=3)
    parser.add_argument('--dense_multimask_output', type=int, default=0)
    parser.add_argument('--use_dense_mask', type=int, default=0)
    parser.add_argument('--multimask_output', type=int, default=0)

    # Matcher parameters
    parser.add_argument('--num_centers', type=int, default=8, help='K centers for kmeans')
    parser.add_argument('--use_box', action='store_true', help='use box as an extra prompt for sam')
    parser.add_argument('--use_points_or_centers', action='store_true', help='points:T, center: F')
    parser.add_argument('--sample-range', type=tuple, default=(4,6), help='sample points number range')
    parser.add_argument('--max_sample_iterations', type=int, default=30)
    parser.add_argument('--alpha', type=float, default=1.)
    parser.add_argument('--beta', type=float, default=0.)
    parser.add_argument('--exp', type=float, default=0.)
    parser.add_argument('--emd_filter', type=float, default=0.0, help='use emd_filter')
    parser.add_argument('--purity_filter', type=float, default=0.0, help='use purity_filter')
    parser.add_argument('--coverage_filter', type=float, default=0.0, help='use coverage_filter')
    parser.add_argument('--use_score_filter', action='store_true')
    parser.add_argument('--deep_score_norm_filter', type=float, default=0.1)
    parser.add_argument('--deep_score_filter', type=float, default=0.33)
    parser.add_argument('--topk_scores_threshold', type=float, default=0.7)
    parser.add_argument('--num_merging_mask', type=int, default=10, help='topk masks for merging')

    args = parser.parse_args()
    return args

def definite_argument_parser(args, version=1):

    if version==1:

        args.max_sample_iterations = 64
        args.box_nms_thresh = 0.65
        args.sample_range = (1, 6)
        args.topk_scores_threshold = 0.0
        args.use_dense_mask = 1
        args.use_points_or_centers = True
        args.purity_filter = 0.02
        args.iou_filter = 0.85
        args.multimask_output = 1
        args.sel_stability_score_thresh = 0.90
        args.use_score_filter = True
        args.alpha = 1.0
        args.beta = 0.
        args.exp = 0.
        args.num_merging_mask = 9
    elif version == 2:
        args.max_sample_iterations = 30
        args.sample_range = (4, 6)
        args.multimask_output = 0
        args.alpha = 0.8
        args.beta = 0.2
        args.exp = 1.
        args.num_merging_mask = 10
    elif version == 3:
        args.max_sample_iterations = 128
        args.sample_range = (3, 6)
        args.use_box = True
        args.use_points_or_centers = True
        args.coverage_filter = 0.3
        args.alpha = 0.5
        args.beta = 0.5
        args.exp = 0.
        args.num_merging_mask = 5

    return args

def preprocess_data(kwargs, args=None):

    img_size = args.img_size
    transform = transforms.Compose([
        transforms.Resize(size=(img_size, img_size)),
        transforms.ToTensor()
    ])

    support_img = Image.fromarray(kwargs.get("support_img"))
    query_img_1 = Image.fromarray(kwargs.get("query_img_1"))
    query_img_2 = Image.fromarray(kwargs.get("query_img_2"))

    support_img_ori_size = (support_img.size[1], support_img.size[0]) # H, W
    query_img_1_ori_size = (query_img_1.size[1], query_img_1.size[0])
    query_img_2_ori_size = (query_img_2.size[1], query_img_2.size[0])


    support_img = transform(support_img)
    query_img_1 = transform(query_img_1)
    query_img_2 = transform(query_img_2)

    support_mask = torch.tensor(kwargs.get("support_mask"))
    support_mask = F.interpolate(support_mask.unsqueeze(0).float(), support_img.size()[-2:],
                               mode='nearest') > 0
    query_imgs = torch.stack([query_img_1, query_img_2], dim=0)

    data = {
        "support_img": support_img[None, ...],
        "support_mask": support_mask,
        "query_imgs": query_imgs,
        "support_img_ori_size": support_img_ori_size,
        "query_imgs_ori_size": (query_img_1_ori_size, query_img_2_ori_size),
    }

    return data

def preprocess_support_mask(data, predictor, version=1):

    if version == 3:
        return data

    sup_mask = data['support_mask'].squeeze()
    H, W = sup_mask.shape[-2:]
    input_points = sup_mask.nonzero().numpy()[:1,::-1]#[:,::-1]
    input_label = np.array([1]*len(input_points))

    support_img_np = data['support_img'].mul(255).byte()
    support_img_np = support_img_np.squeeze().permute(1,2,0).cpu().numpy()

    # forward encoder to obtain image feature
    predictor.reset_image()
    predictor.set_image(support_img_np)

    # mask, _, _ = predictor.predict(
    #     point_coords=input_points,
    #     point_labels=input_label,
    #     multimask_output=False #True
    # )
    mask, _, _ = predictor.predict(
        point_coords=input_points,
        point_labels=input_label,
        multimask_output=True  # True
    )
    predictor.reset_image()

    # show_img_point_box_mask(
    #     support_img_np,
    #     masks=mask,
    #     save_path='test1.png',
    #     mode='mask'
    # )

    # data['support_mask'] = torch.tensor(mask[:1])[None, ...]
    data['support_mask'] = torch.tensor(mask[-1:])[None, ...]

    return data

def main_oss_ops(**kwargs):

    args = default_argument_parser()
    args = definite_argument_parser(args, kwargs.get("version"))

    # Model initialization
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    args.device = device

    # create sam
    sam = kwargs.get("sam")
    predictor = SamPredictor(sam)
    generator = SamAutomaticMaskGenerator(
        sam,
        points_per_side=args.points_per_side,
        points_per_batch=64,
        pred_iou_thresh=args.pred_iou_thresh,
        stability_score_thresh=args.stability_score_thresh,
        stability_score_offset=1.0,
        sel_stability_score_thresh=args.sel_stability_score_thresh,
        sel_pred_iou_thresh=args.iou_filter,
        box_nms_thresh=args.box_nms_thresh,
        sel_output_layer=args.output_layer,
        output_layer=args.dense_multimask_output,
        dense_pred=args.use_dense_mask,
        multimask_output=args.dense_multimask_output > 0,
        sel_multimask_output=args.multimask_output > 0,
    )

    # create dinov2, large
    dinov2 = kwargs.get("dinov2")

    # create matcher
    score_filter_cfg = {
        "emd": args.emd_filter,
        "purity": args.purity_filter,
        "coverage": args.coverage_filter,
        "score_filter": args.use_score_filter,
        "score": args.deep_score_filter,
        "score_norm": args.deep_score_norm_filter,
        "topk_scores_threshold": args.topk_scores_threshold
    }

    matcher = Matcher(
        encoder=dinov2,
        generator=generator,
        num_centers=args.num_centers,
        use_box=args.use_box,
        use_points_or_centers=args.use_points_or_centers,
        sample_range=args.sample_range,
        max_sample_iterations=args.max_sample_iterations,
        alpha=args.alpha,
        beta=args.beta,
        exp=args.exp,
        score_filter_cfg=score_filter_cfg,
        num_merging_mask=args.num_merging_mask,
        device=args.device
    )

    # process data
    data = preprocess_data(kwargs, args=args)
    data = preprocess_support_mask(data, predictor, version=kwargs.get("version"))

    # inference
    with torch.no_grad():
        utils.fix_randseed(0)
        pred_masks, pred_mask_lists = [], []

        # support mask
        support_img_ori_size = data['support_img_ori_size']
        mask = data['support_mask'].to(predictor.model.device).float()
        mask = F.interpolate(mask, support_img_ori_size, mode="bilinear", align_corners=False) > 0
        mask = mask.squeeze(0).cpu().numpy()
        pred_masks.append(mask)
        pred_mask_lists.append(None)

        for query_img, query_img_ori_size in zip(data['query_imgs'], data['query_imgs_ori_size']):
            data['query_img'], data['query_img_ori_size'] = query_img[None, ...], query_img_ori_size

            support_imgs, support_masks = data["support_img"].to(matcher.device)[None, ...], data["support_mask"].to(matcher.device)  # (1, 1, 3, H, W), (1, 1, H, W)
            query_img, query_img_ori_size = data['query_img'].to(matcher.device), data['query_img_ori_size']  # (1, 3, H, W), img_size

            # 1. Matcher prepare references and target
            matcher.set_reference(support_imgs, support_masks)
            matcher.set_target(query_img, query_img_ori_size)

            # 2. Predict mask of target
            pred_mask, pred_mask_list = matcher.predict()
            matcher.clear()

            pred_masks.append(pred_mask)
            pred_mask_lists.append(pred_mask_list)


    return pred_masks, pred_mask_lists