File size: 5,240 Bytes
ebb9c75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from __future__ import annotations

import datetime
import os
import pathlib
import shlex
import shutil
import subprocess
import sys

import gradio as gr
import slugify
import torch
import numpy as np
import huggingface_hub
from huggingface_hub import HfApi
from omegaconf import OmegaConf

from segment_anything import sam_model_registry
from dinov2.models import vision_transformer as vits
import dinov2.utils.utils as dinov2_utils

from gradio_demo.oss_ops_inference import main_oss_ops


ORIGINAL_SPACE_ID = ''
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)


class Runner:
    def __init__(self, hf_token: str | None = None):
        self.hf_token = hf_token

        # self.checkpoint_dir = pathlib.Path('checkpoints')
        # self.checkpoint_dir.mkdir(exist_ok=True)

        # oss, ops
        self.prompt_res_g = None
        self.prompt_mask_g = None
        self.tar1_res_g = None
        self.tar2_res_g = None
        self.version = 1

        self.pred_masks = None
        self.pred_mask_lists = None

        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

        sam_checkpoint = "models/sam_vit_h_4b8939.pth"
        model_type = "default"
        self.sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
        self.sam.to(device=device)

        dinov2_kwargs = dict(
            img_size=518,
            patch_size=14,
            init_values=1e-5,
            ffn_layer='mlp',
            block_chunks=0,
            qkv_bias=True,
            proj_bias=True,
            ffn_bias=True,
        )
        dinov2 = vits.__dict__["vit_large"](**dinov2_kwargs)

        dinov2_utils.load_pretrained_weights(dinov2, "models/dinov2_vitl14_pretrain.pth", "teacher")
        dinov2.eval()
        dinov2.to(device=device)
        self.dinov2 = dinov2

    def inference_oss_ops(self, prompt, target1, target2, version):

        if version == 'version 1 (πŸ”Ί multiple instances  πŸ”» whole, πŸ”» part)':
            self.prompt_res_g, self.tar1_res_g, self.tar2_res_g = prompt['image'], target1, target2
            self.prompt_mask_g = (prompt['mask'][..., 0] != 0)[None, ...] # 1, H, w
            self.version = 1
        elif version == 'version 2 (πŸ”» multiple instances  πŸ”Ί whole, πŸ”» part)':
            self.prompt_res_g, self.tar1_res_g, self.tar2_res_g = prompt['image'], target1, target2
            self.prompt_mask_g = (prompt['mask'][..., 0] != 0)[None, ...]  # 1, H, w
            self.version = 2
        else:
            self.prompt_res_g, self.tar1_res_g, self.tar2_res_g = prompt['image'], target1, target2
            self.prompt_mask_g = (prompt['mask'][..., 0] != 0)[None, ...]  # 1, H, w
            self.version = 3

        self.pred_masks, self.pred_mask_lists = main_oss_ops(
            sam=self.sam,
            dinov2=self.dinov2,
            support_img=self.prompt_res_g,
            support_mask=self.prompt_mask_g,
            query_img_1=self.tar1_res_g,
            query_img_2=self.tar2_res_g,
            version=self.version
        )

        text = "Process Successful!"

        return text


    def clear_fn(self):

        self.prompt_res_g, self.tar1_res_g, self.tar2_res_g, self.prompt_mask_g = None, None, None, None
        self.version = 1
        self.pred_masks = None
        self.pred_mask_lists = None

        return [None] * 7


    def controllable_mask_output(self, k):

        color = np.array([30, 144, 255])

        if self.version != 1:

            prompt_mask_res, tar1_mask_res, tar2_mask_res = self.pred_masks

            h, w = prompt_mask_res.shape[-2:]
            prompt_mask_img = prompt_mask_res.reshape(h, w, 1) * color.reshape(1, 1, -1)
            prompt_mask_res = self.prompt_res_g * 0.5 + prompt_mask_img * 0.5

            h, w = tar1_mask_res.shape[-2:]
            tar1_mask_img = tar1_mask_res.reshape(h, w, 1) * color.reshape(1, 1, -1)
            tar1_mask_res = self.tar1_res_g * 0.5 + tar1_mask_img * 0.5

            h, w = tar2_mask_res.shape[-2:]
            tar2_mask_img = tar2_mask_res.reshape(h, w, 1) * color.reshape(1, 1, -1)
            tar2_mask_res = self.tar2_res_g * 0.5 + tar2_mask_img * 0.5

        else:
            prompt_mask_res = self.pred_masks[0]
            tar1_mask_res, tar2_mask_res = self.pred_mask_lists[1:]

            tar1_mask_res = tar1_mask_res[:min(k, len(tar1_mask_res))].sum(0)>0
            tar2_mask_res = tar2_mask_res[:min(k, len(tar2_mask_res))].sum(0) > 0

            h, w = prompt_mask_res.shape[-2:]
            prompt_mask_img = prompt_mask_res.reshape(h, w, 1) * color.reshape(1, 1, -1)
            prompt_mask_res = self.prompt_res_g * 0.5 + prompt_mask_img * 0.5

            h, w = tar1_mask_res.shape[-2:]
            tar1_mask_img = tar1_mask_res.reshape(h, w, 1) * color.reshape(1, 1, -1)
            tar1_mask_res = self.tar1_res_g * 0.5 + tar1_mask_img * 0.5

            h, w = tar2_mask_res.shape[-2:]
            tar2_mask_img = tar2_mask_res.reshape(h, w, 1) * color.reshape(1, 1, -1)
            tar2_mask_res = self.tar2_res_g * 0.5 + tar2_mask_img * 0.5

        return prompt_mask_res/255, tar1_mask_res/255, tar2_mask_res/255
    

    def inference_vos(self, prompt_vid, vid):

        raise NotImplementedError