Spaces:
Running
Running
Joshua Lochner
commited on
Commit
·
537f2b7
1
Parent(s):
2782b0c
Add `--channel_id` parameter to evaluation script to run evaluation on a channel
Browse files- src/evaluate.py +110 -31
src/evaluate.py
CHANGED
|
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from model import get_model_tokenizer
|
| 2 |
from utils import jaccard
|
| 3 |
from datasets import load_dataset
|
|
@@ -41,6 +45,13 @@ class EvaluationArguments(TrainingOutputArguments):
|
|
| 41 |
}
|
| 42 |
)
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
def attach_predictions_to_sponsor_segments(predictions, sponsor_segments):
|
| 46 |
"""Attach sponsor segments to closest prediction"""
|
|
@@ -138,6 +149,56 @@ def calculate_metrics(labelled_words, predictions):
|
|
| 138 |
return metrics
|
| 139 |
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
def main():
|
| 142 |
hf_parser = HfArgumentParser((
|
| 143 |
EvaluationArguments,
|
|
@@ -162,15 +223,25 @@ def main():
|
|
| 162 |
|
| 163 |
with open(final_path) as fp:
|
| 164 |
final_data = json.load(fp)
|
| 165 |
-
video_ids = list(final_data.keys())
|
| 166 |
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
-
|
| 170 |
-
|
| 171 |
|
| 172 |
-
|
| 173 |
-
|
| 174 |
|
| 175 |
# TODO option to choose categories
|
| 176 |
|
|
@@ -186,9 +257,11 @@ def main():
|
|
| 186 |
for video_index, video_id in enumerate(progress):
|
| 187 |
|
| 188 |
progress.set_description(f'Processing {video_id}')
|
| 189 |
-
|
|
|
|
| 190 |
if not sponsor_segments:
|
| 191 |
-
|
|
|
|
| 192 |
|
| 193 |
words = get_words(video_id)
|
| 194 |
if not words:
|
|
@@ -198,36 +271,42 @@ def main():
|
|
| 198 |
predictions = predict(video_id, model, tokenizer,
|
| 199 |
segmentation_args, words, classifier_args)
|
| 200 |
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
|
|
|
|
|
|
| 211 |
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
'precision': total_precision/len(out_metrics),
|
| 215 |
-
'recall': total_recall/len(out_metrics),
|
| 216 |
-
'f-score': total_fscore/len(out_metrics)
|
| 217 |
-
})
|
| 218 |
|
| 219 |
-
|
| 220 |
-
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
seg for seg in labelled_predicted_segments if seg['best_prediction'] is None]
|
| 227 |
|
| 228 |
if missed_segments or incorrect_segments:
|
| 229 |
-
print(
|
| 230 |
-
f'Issues identified for https://youtu.be/{video_id} (#{video_index})')
|
| 231 |
# Potentially missed segments (model predicted, but not in database)
|
| 232 |
if missed_segments:
|
| 233 |
print(' - Missed segments:')
|
|
|
|
| 1 |
+
import itertools
|
| 2 |
+
import base64
|
| 3 |
+
import re
|
| 4 |
+
import requests
|
| 5 |
from model import get_model_tokenizer
|
| 6 |
from utils import jaccard
|
| 7 |
from datasets import load_dataset
|
|
|
|
| 45 |
}
|
| 46 |
)
|
| 47 |
|
| 48 |
+
channel_id: Optional[str] = field(
|
| 49 |
+
default=None,
|
| 50 |
+
metadata={
|
| 51 |
+
'help': 'Used to evaluate a channel'
|
| 52 |
+
}
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
|
| 56 |
def attach_predictions_to_sponsor_segments(predictions, sponsor_segments):
|
| 57 |
"""Attach sponsor segments to closest prediction"""
|
|
|
|
| 149 |
return metrics
|
| 150 |
|
| 151 |
|
| 152 |
+
# Public innertube key (b64 encoded so that it is not incorrectly flagged)
|
| 153 |
+
INNERTUBE_KEY = base64.b64decode(
|
| 154 |
+
b'QUl6YVN5QU9fRkoyU2xxVThRNFNURUhMR0NpbHdfWTlfMTFxY1c4').decode()
|
| 155 |
+
|
| 156 |
+
YT_CONTEXT = {
|
| 157 |
+
'client': {
|
| 158 |
+
'userAgent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36,gzip(gfe)',
|
| 159 |
+
'clientName': 'WEB',
|
| 160 |
+
'clientVersion': '2.20211221.00.00',
|
| 161 |
+
}
|
| 162 |
+
}
|
| 163 |
+
_YT_INITIAL_DATA_RE = r'(?:window\s*\[\s*["\']ytInitialData["\']\s*\]|ytInitialData)\s*=\s*({.+?})\s*;\s*(?:var\s+meta|</script|\n)'
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def get_all_channel_vids(channel_id):
|
| 167 |
+
continuation = None
|
| 168 |
+
while True:
|
| 169 |
+
if continuation is None:
|
| 170 |
+
params = {'list': channel_id.replace('UC', 'UU', 1)}
|
| 171 |
+
response = requests.get(
|
| 172 |
+
'https://www.youtube.com/playlist', params=params)
|
| 173 |
+
items = json.loads(re.search(_YT_INITIAL_DATA_RE, response.text).group(1))['contents']['twoColumnBrowseResultsRenderer']['tabs'][0]['tabRenderer']['content'][
|
| 174 |
+
'sectionListRenderer']['contents'][0]['itemSectionRenderer']['contents'][0]['playlistVideoListRenderer']['contents']
|
| 175 |
+
else:
|
| 176 |
+
params = {'key': INNERTUBE_KEY}
|
| 177 |
+
data = {
|
| 178 |
+
'context': YT_CONTEXT,
|
| 179 |
+
'continuation': continuation
|
| 180 |
+
}
|
| 181 |
+
response = requests.post(
|
| 182 |
+
'https://www.youtube.com/youtubei/v1/browse', params=params, json=data)
|
| 183 |
+
items = response.json()[
|
| 184 |
+
'onResponseReceivedActions'][0]['appendContinuationItemsAction']['continuationItems']
|
| 185 |
+
|
| 186 |
+
new_token = None
|
| 187 |
+
for vid in items:
|
| 188 |
+
info = vid.get('playlistVideoRenderer')
|
| 189 |
+
if info:
|
| 190 |
+
yield info['videoId']
|
| 191 |
+
continue
|
| 192 |
+
|
| 193 |
+
info = vid.get('continuationItemRenderer')
|
| 194 |
+
if info:
|
| 195 |
+
new_token = info['continuationEndpoint']['continuationCommand']['token']
|
| 196 |
+
|
| 197 |
+
if new_token is None:
|
| 198 |
+
break
|
| 199 |
+
continuation = new_token
|
| 200 |
+
|
| 201 |
+
|
| 202 |
def main():
|
| 203 |
hf_parser = HfArgumentParser((
|
| 204 |
EvaluationArguments,
|
|
|
|
| 223 |
|
| 224 |
with open(final_path) as fp:
|
| 225 |
final_data = json.load(fp)
|
|
|
|
| 226 |
|
| 227 |
+
if evaluation_args.channel_id is not None:
|
| 228 |
+
start = evaluation_args.start_index or 0
|
| 229 |
+
end = None if evaluation_args.max_videos is None else start + \
|
| 230 |
+
evaluation_args.max_videos
|
| 231 |
+
|
| 232 |
+
video_ids = list(itertools.islice(get_all_channel_vids(
|
| 233 |
+
evaluation_args.channel_id), start, end))
|
| 234 |
+
print('Found', len(video_ids), 'for channel', evaluation_args.channel_id)
|
| 235 |
+
|
| 236 |
+
else:
|
| 237 |
+
video_ids = list(final_data.keys())
|
| 238 |
+
random.shuffle(video_ids)
|
| 239 |
|
| 240 |
+
if evaluation_args.start_index is not None:
|
| 241 |
+
video_ids = video_ids[evaluation_args.start_index:]
|
| 242 |
|
| 243 |
+
if evaluation_args.max_videos is not None:
|
| 244 |
+
video_ids = video_ids[:evaluation_args.max_videos]
|
| 245 |
|
| 246 |
# TODO option to choose categories
|
| 247 |
|
|
|
|
| 257 |
for video_index, video_id in enumerate(progress):
|
| 258 |
|
| 259 |
progress.set_description(f'Processing {video_id}')
|
| 260 |
+
|
| 261 |
+
sponsor_segments = final_data.get(video_id)
|
| 262 |
if not sponsor_segments:
|
| 263 |
+
# TODO remove - parse using whole database
|
| 264 |
+
continue
|
| 265 |
|
| 266 |
words = get_words(video_id)
|
| 267 |
if not words:
|
|
|
|
| 271 |
predictions = predict(video_id, model, tokenizer,
|
| 272 |
segmentation_args, words, classifier_args)
|
| 273 |
|
| 274 |
+
if sponsor_segments:
|
| 275 |
+
labelled_words = add_labels_to_words(
|
| 276 |
+
words, sponsor_segments)
|
| 277 |
+
met = calculate_metrics(labelled_words, predictions)
|
| 278 |
+
met['video_id'] = video_id
|
| 279 |
+
|
| 280 |
+
out_metrics.append(met)
|
| 281 |
|
| 282 |
+
total_accuracy += met['accuracy']
|
| 283 |
+
total_precision += met['precision']
|
| 284 |
+
total_recall += met['recall']
|
| 285 |
+
total_fscore += met['f-score']
|
| 286 |
|
| 287 |
+
progress.set_postfix({
|
| 288 |
+
'accuracy': total_accuracy/len(out_metrics),
|
| 289 |
+
'precision': total_precision/len(out_metrics),
|
| 290 |
+
'recall': total_recall/len(out_metrics),
|
| 291 |
+
'f-score': total_fscore/len(out_metrics)
|
| 292 |
+
})
|
| 293 |
|
| 294 |
+
labelled_predicted_segments = attach_predictions_to_sponsor_segments(
|
| 295 |
+
predictions, sponsor_segments)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
|
| 297 |
+
# Identify possible issues:
|
| 298 |
+
missed_segments = [
|
| 299 |
+
prediction for prediction in predictions if prediction['best_sponsorship'] is None]
|
| 300 |
+
incorrect_segments = [
|
| 301 |
+
seg for seg in labelled_predicted_segments if seg['best_prediction'] is None]
|
| 302 |
|
| 303 |
+
else:
|
| 304 |
+
# Not in database (all segments missed)
|
| 305 |
+
missed_segments = predictions
|
| 306 |
+
incorrect_segments = None
|
|
|
|
| 307 |
|
| 308 |
if missed_segments or incorrect_segments:
|
| 309 |
+
print(f'Issues identified for {video_id} (#{video_index})')
|
|
|
|
| 310 |
# Potentially missed segments (model predicted, but not in database)
|
| 311 |
if missed_segments:
|
| 312 |
print(' - Missed segments:')
|