Spaces:
Running
Running
| from functools import partial | |
| from math import ceil, floor | |
| import streamlit.components.v1 as components | |
| from transformers import ( | |
| AutoModelForSeq2SeqLM, | |
| AutoTokenizer, | |
| ) | |
| import streamlit as st | |
| import sys | |
| import os | |
| import json | |
| from urllib.parse import quote | |
| from huggingface_hub import hf_hub_download | |
| # Allow direct execution | |
| sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), 'src')) # noqa | |
| from predict import SegmentationArguments, ClassifierArguments, predict as pred, seconds_to_time # noqa | |
| from evaluate import EvaluationArguments | |
| from shared import device, CATGEGORY_OPTIONS | |
| st.set_page_config( | |
| page_title='SponsorBlock ML', | |
| page_icon='🤖', | |
| # layout='wide', | |
| # initial_sidebar_state="expanded", | |
| menu_items={ | |
| 'Get Help': 'https://github.com/xenova/sponsorblock-ml', | |
| 'Report a bug': 'https://github.com/xenova/sponsorblock-ml/issues/new/choose', | |
| # 'About': "# This is a header. This is an *extremely* cool app!" | |
| } | |
| ) | |
| # https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints | |
| # https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#experimental-t5-pre-trained-model-checkpoints | |
| # https://huggingface.co/docs/transformers/model_doc/t5 | |
| # https://huggingface.co/docs/transformers/model_doc/t5v1.1 | |
| # Faster caching system for predictions (No need to hash) | |
| def create_prediction_cache(): | |
| return {} | |
| def create_function_cache(): | |
| return {} | |
| prediction_cache = create_prediction_cache() | |
| prediction_function_cache = create_function_cache() | |
| MODELS = { | |
| 'Small (293 MB)': { | |
| 'pretrained': 'google/t5-v1_1-small', | |
| 'repo_id': 'Xenova/sponsorblock-small', | |
| 'num_parameters': '77M' | |
| }, | |
| 'Base v1 (850 MB)': { | |
| 'pretrained': 't5-base', | |
| 'repo_id': 'Xenova/sponsorblock-base-v1', | |
| 'num_parameters': '220M' | |
| }, | |
| 'Base v1.1 (944 MB)': { | |
| 'pretrained': 'google/t5-v1_1-base', | |
| 'repo_id': 'Xenova/sponsorblock-base-v1.1', | |
| 'num_parameters': '250M' | |
| } | |
| } | |
| # Create per-model cache | |
| for m in MODELS: | |
| if m not in prediction_cache: | |
| prediction_cache[m] = {} | |
| CLASSIFIER_PATH = 'Xenova/sponsorblock-classifier' | |
| def download_classifier(classifier_args): | |
| # Save classifier and vectorizer | |
| hf_hub_download(repo_id=CLASSIFIER_PATH, | |
| filename=classifier_args.classifier_file, | |
| cache_dir=classifier_args.classifier_dir, | |
| force_filename=classifier_args.classifier_file, | |
| ) | |
| hf_hub_download(repo_id=CLASSIFIER_PATH, | |
| filename=classifier_args.vectorizer_file, | |
| cache_dir=classifier_args.classifier_dir, | |
| force_filename=classifier_args.vectorizer_file, | |
| ) | |
| return True | |
| def predict_function(model_id, model, tokenizer, segmentation_args, classifier_args, video_id): | |
| if video_id not in prediction_cache[model_id]: | |
| prediction_cache[model_id][video_id] = pred( | |
| video_id, model, tokenizer, | |
| segmentation_args=segmentation_args, | |
| classifier_args=classifier_args | |
| ) | |
| return prediction_cache[model_id][video_id] | |
| def load_predict(model_id): | |
| model_info = MODELS[model_id] | |
| if model_id not in prediction_function_cache: | |
| # Use default segmentation and classification arguments | |
| evaluation_args = EvaluationArguments(model_path=model_info['repo_id']) | |
| segmentation_args = SegmentationArguments() | |
| classifier_args = ClassifierArguments() | |
| model = AutoModelForSeq2SeqLM.from_pretrained( | |
| evaluation_args.model_path) | |
| model.to(device()) | |
| tokenizer = AutoTokenizer.from_pretrained(evaluation_args.model_path) | |
| download_classifier(classifier_args) | |
| prediction_function_cache[model_id] = partial( | |
| predict_function, model_id, model, tokenizer, segmentation_args, classifier_args) | |
| return prediction_function_cache[model_id] | |
| def main(): | |
| # Display heading and subheading | |
| st.write('# SponsorBlock ML') | |
| st.write('##### Automatically detect in-video YouTube sponsorships, self/unpaid promotions, and interaction reminders.') | |
| model_id = st.selectbox('Select model', MODELS.keys(), index=0) | |
| # Load prediction function | |
| predict = load_predict(model_id) | |
| video_id = st.text_input('Video ID:') # , placeholder='e.g., axtQvkSpoto' | |
| categories = st.multiselect('Categories:', | |
| CATGEGORY_OPTIONS.keys(), | |
| CATGEGORY_OPTIONS.keys(), | |
| format_func=CATGEGORY_OPTIONS.get | |
| ) | |
| # Hide segments with a confidence lower than | |
| confidence_threshold = st.slider( | |
| 'Confidence Threshold (%):', min_value=0, max_value=100) | |
| video_id_length = len(video_id) | |
| if video_id_length == 0: | |
| return | |
| elif video_id_length != 11: | |
| st.exception(ValueError('Invalid YouTube ID')) | |
| return | |
| with st.spinner('Running model...'): | |
| predictions = predict(video_id) | |
| if len(predictions) == 0: | |
| st.success('No segments found!') | |
| return | |
| submit_segments = [] | |
| for index, prediction in enumerate(predictions, start=1): | |
| if prediction['category'] not in categories: | |
| continue # Skip | |
| confidence = prediction['probability'] * 100 | |
| if confidence < confidence_threshold: | |
| continue | |
| submit_segments.append({ | |
| 'segment': [prediction['start'], prediction['end']], | |
| 'category': prediction['category'].lower(), | |
| 'actionType': 'skip' | |
| }) | |
| start_time = seconds_to_time(prediction['start']) | |
| end_time = seconds_to_time(prediction['end']) | |
| with st.expander( | |
| f"[{prediction['category']}] Prediction #{index} ({start_time} \u2192 {end_time})" | |
| ): | |
| url = f"https://www.youtube-nocookie.com/embed/{video_id}?&start={floor(prediction['start'])}&end={ceil(prediction['end'])}" | |
| # autoplay=1controls=0&&modestbranding=1&fs=0 | |
| # , width=None, height=None, scrolling=False | |
| components.iframe(url, width=670, height=376) | |
| text = ' '.join(w['text'] for w in prediction['words']) | |
| st.write(f"**Times:** {start_time} \u2192 {end_time}") | |
| st.write( | |
| f"**Category:** {CATGEGORY_OPTIONS[prediction['category']]}") | |
| st.write(f"**Confidence:** {confidence:.2f}%") | |
| st.write(f'**Text:** "{text}"') | |
| json_data = quote(json.dumps(submit_segments)) | |
| link = f'[Submit Segments](https://www.youtube.com/watch?v={video_id}#segments={json_data})' | |
| st.markdown(link, unsafe_allow_html=True) | |
| wiki_link = '[Review generated segments before submitting!](https://wiki.sponsor.ajay.app/w/Automating_Submissions)' | |
| st.markdown(wiki_link, unsafe_allow_html=True) | |
| if __name__ == '__main__': | |
| main() | |