Spaces:
Running
Running
| """ Finetuning the library models for sequence classification.""" | |
| import logging | |
| import os | |
| import sys | |
| from dataclasses import dataclass | |
| from typing import Optional | |
| import datasets | |
| import numpy as np | |
| import transformers | |
| from transformers import ( | |
| DataCollatorWithPadding, | |
| EvalPrediction, | |
| HfArgumentParser, | |
| Trainer, | |
| TrainingArguments, | |
| set_seed, | |
| ) | |
| from transformers.utils import check_min_version | |
| from transformers.utils.versions import require_version | |
| from shared import ( | |
| CATEGORIES, | |
| DatasetArguments, | |
| prepare_datasets, | |
| load_datasets, | |
| CustomTrainingArguments, | |
| train_from_checkpoint, | |
| get_last_checkpoint | |
| ) | |
| from model import get_model_tokenizer, ModelArguments | |
| # Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
| check_min_version('4.17.0') | |
| require_version('datasets>=1.8.0', 'To fix: pip install -r requirements.txt') | |
| os.environ['WANDB_DISABLED'] = 'true' | |
| logger = logging.getLogger(__name__) | |
| class ClassifierTrainingArguments(CustomTrainingArguments, TrainingArguments): | |
| pass | |
| class ClassifierDatasetArguments(DatasetArguments): | |
| def __post_init__(self): | |
| self.train_file = self.c_train_file | |
| self.validation_file = self.c_validation_file | |
| self.test_file = self.c_test_file | |
| def main(): | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| hf_parser = HfArgumentParser(( | |
| ModelArguments, | |
| ClassifierDatasetArguments, | |
| ClassifierTrainingArguments | |
| )) | |
| model_args, dataset_args, training_args = hf_parser.parse_args_into_dataclasses() | |
| # Setup logging | |
| logging.basicConfig( | |
| format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', | |
| datefmt='%m/%d/%Y %H:%M:%S', | |
| handlers=[logging.StreamHandler(sys.stdout)], | |
| ) | |
| log_level = training_args.get_process_log_level() | |
| logger.setLevel(log_level) | |
| datasets.utils.logging.set_verbosity(log_level) | |
| transformers.utils.logging.set_verbosity(log_level) | |
| transformers.utils.logging.enable_default_handler() | |
| transformers.utils.logging.enable_explicit_format() | |
| # Log on each process the small summary: | |
| logger.warning( | |
| f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' | |
| + f'distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}' | |
| ) | |
| logger.info(f'Training/evaluation parameters {training_args}') | |
| # Detecting last checkpoint. | |
| last_checkpoint = get_last_checkpoint(training_args) | |
| # Set seed before initializing model. | |
| set_seed(training_args.seed) | |
| # Loading a dataset from your local files. | |
| # CSV/JSON training and evaluation files are needed. | |
| raw_datasets = load_datasets(dataset_args) | |
| # See more about loading any type of standard or custom dataset at | |
| # https://huggingface.co/docs/datasets/loading_datasets.html. | |
| config_args = { | |
| 'num_labels': len(CATEGORIES), | |
| 'id2label': {k: str(v).upper() for k, v in enumerate(CATEGORIES)}, | |
| 'label2id': {str(v).upper(): k for k, v in enumerate(CATEGORIES)} | |
| } | |
| model, tokenizer = get_model_tokenizer( | |
| model_args, training_args, config_args=config_args, model_type='classifier') | |
| if training_args.max_seq_length > tokenizer.model_max_length: | |
| logger.warning( | |
| f'The max_seq_length passed ({training_args.max_seq_length}) is larger than the maximum length for the' | |
| f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' | |
| ) | |
| max_seq_length = min(training_args.max_seq_length, | |
| tokenizer.model_max_length) | |
| def preprocess_function(examples): | |
| # Tokenize the texts | |
| result = tokenizer( | |
| examples['text'], padding='max_length', max_length=max_seq_length, truncation=True) | |
| result['label'] = examples['label'] | |
| return result | |
| train_dataset, eval_dataset, predict_dataset = prepare_datasets( | |
| raw_datasets, dataset_args, training_args, preprocess_function) | |
| # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a | |
| # predictions and label_ids field) and has to return a dictionary string to float. | |
| def compute_metrics(p: EvalPrediction): | |
| preds = p.predictions[0] if isinstance( | |
| p.predictions, tuple) else p.predictions | |
| preds = np.argmax(preds, axis=1) | |
| return {'accuracy': (preds == p.label_ids).astype(np.float32).mean().item()} | |
| # Data collator will default to DataCollatorWithPadding when the tokenizer is passed to Trainer, so we change it if | |
| # we already did the padding. | |
| if training_args.fp16: | |
| data_collator = DataCollatorWithPadding( | |
| tokenizer, pad_to_multiple_of=8) | |
| else: | |
| data_collator = None | |
| # Initialize our Trainer | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=train_dataset, | |
| eval_dataset=eval_dataset, | |
| compute_metrics=compute_metrics, | |
| tokenizer=tokenizer, | |
| data_collator=data_collator, | |
| ) | |
| # Training | |
| train_result = train_from_checkpoint( | |
| trainer, last_checkpoint, training_args) | |
| metrics = train_result.metrics | |
| max_train_samples = ( | |
| training_args.max_train_samples if training_args.max_train_samples is not None else len( | |
| train_dataset) | |
| ) | |
| metrics['train_samples'] = min(max_train_samples, len(train_dataset)) | |
| trainer.save_model() # Saves the tokenizer too for easy upload | |
| trainer.log_metrics('train', metrics) | |
| trainer.save_metrics('train', metrics) | |
| trainer.save_state() | |
| kwargs = {'finetuned_from': model_args.model_name_or_path, | |
| 'tasks': 'text-classification'} | |
| if training_args.push_to_hub: | |
| trainer.push_to_hub(**kwargs) | |
| else: | |
| trainer.create_model_card(**kwargs) | |
| if __name__ == '__main__': | |
| main() | |