Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,1174 +1,61 @@
|
|
| 1 |
-
"""
|
| 2 |
-
VibeVoice Gradio Demo - High-Quality Dialogue Generation Interface with Streaming Support
|
| 3 |
-
"""
|
| 4 |
-
|
| 5 |
-
import argparse
|
| 6 |
-
import json
|
| 7 |
import os
|
|
|
|
| 8 |
import sys
|
| 9 |
-
import tempfile
|
| 10 |
-
import time
|
| 11 |
-
from pathlib import Path
|
| 12 |
-
from typing import List, Dict, Any, Iterator
|
| 13 |
-
from datetime import datetime
|
| 14 |
-
import threading
|
| 15 |
-
import numpy as np
|
| 16 |
-
import gradio as gr
|
| 17 |
-
import librosa
|
| 18 |
-
import soundfile as sf
|
| 19 |
-
import torch
|
| 20 |
-
import os
|
| 21 |
-
import traceback
|
| 22 |
-
|
| 23 |
-
from vibevoice.modular.configuration_vibevoice import VibeVoiceConfig
|
| 24 |
-
from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
|
| 25 |
-
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
|
| 26 |
-
from vibevoice.modular.streamer import AudioStreamer
|
| 27 |
-
from transformers.utils import logging
|
| 28 |
-
from transformers import set_seed
|
| 29 |
-
|
| 30 |
-
logging.set_verbosity_info()
|
| 31 |
-
logger = logging.get_logger(__name__)
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
class VibeVoiceDemo:
|
| 35 |
-
def __init__(self, model_path: str, device: str = "cuda", inference_steps: int = 5):
|
| 36 |
-
"""Initialize the VibeVoice demo with model loading."""
|
| 37 |
-
self.model_path = model_path
|
| 38 |
-
self.device = device
|
| 39 |
-
self.inference_steps = inference_steps
|
| 40 |
-
self.is_generating = False # Track generation state
|
| 41 |
-
self.stop_generation = False # Flag to stop generation
|
| 42 |
-
self.current_streamer = None # Track current audio streamer
|
| 43 |
-
self.load_model()
|
| 44 |
-
self.setup_voice_presets()
|
| 45 |
-
self.load_example_scripts() # Load example scripts
|
| 46 |
-
|
| 47 |
-
def load_model(self):
|
| 48 |
-
"""Load the VibeVoice model and processor."""
|
| 49 |
-
print(f"Loading processor & model from {self.model_path}")
|
| 50 |
-
|
| 51 |
-
# Load processor
|
| 52 |
-
self.processor = VibeVoiceProcessor.from_pretrained(
|
| 53 |
-
self.model_path,
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
-
# Load model
|
| 57 |
-
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
|
| 58 |
-
self.model_path,
|
| 59 |
-
torch_dtype=torch.bfloat16,
|
| 60 |
-
device_map='cuda',
|
| 61 |
-
attn_implementation="flash_attention_2",
|
| 62 |
-
)
|
| 63 |
-
self.model.eval()
|
| 64 |
-
|
| 65 |
-
# Use SDE solver by default
|
| 66 |
-
self.model.model.noise_scheduler = self.model.model.noise_scheduler.from_config(
|
| 67 |
-
self.model.model.noise_scheduler.config,
|
| 68 |
-
algorithm_type='sde-dpmsolver++',
|
| 69 |
-
beta_schedule='squaredcos_cap_v2'
|
| 70 |
-
)
|
| 71 |
-
self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
|
| 72 |
-
|
| 73 |
-
if hasattr(self.model.model, 'language_model'):
|
| 74 |
-
print(f"Language model attention: {self.model.model.language_model.config._attn_implementation}")
|
| 75 |
-
|
| 76 |
-
def setup_voice_presets(self):
|
| 77 |
-
"""Setup voice presets by scanning the voices directory."""
|
| 78 |
-
voices_dir = os.path.join(os.path.dirname(__file__), "voices")
|
| 79 |
-
|
| 80 |
-
# Check if voices directory exists
|
| 81 |
-
if not os.path.exists(voices_dir):
|
| 82 |
-
print(f"Warning: Voices directory not found at {voices_dir}")
|
| 83 |
-
self.voice_presets = {}
|
| 84 |
-
self.available_voices = {}
|
| 85 |
-
return
|
| 86 |
-
|
| 87 |
-
# Scan for all WAV files in the voices directory
|
| 88 |
-
self.voice_presets = {}
|
| 89 |
-
|
| 90 |
-
# Get all .wav files in the voices directory
|
| 91 |
-
wav_files = [f for f in os.listdir(voices_dir)
|
| 92 |
-
if f.lower().endswith(('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac')) and os.path.isfile(os.path.join(voices_dir, f))]
|
| 93 |
-
|
| 94 |
-
# Create dictionary with filename (without extension) as key
|
| 95 |
-
for wav_file in wav_files:
|
| 96 |
-
# Remove .wav extension to get the name
|
| 97 |
-
name = os.path.splitext(wav_file)[0]
|
| 98 |
-
# Create full path
|
| 99 |
-
full_path = os.path.join(voices_dir, wav_file)
|
| 100 |
-
self.voice_presets[name] = full_path
|
| 101 |
-
|
| 102 |
-
# Sort the voice presets alphabetically by name for better UI
|
| 103 |
-
self.voice_presets = dict(sorted(self.voice_presets.items()))
|
| 104 |
-
|
| 105 |
-
# Filter out voices that don't exist (this is now redundant but kept for safety)
|
| 106 |
-
self.available_voices = {
|
| 107 |
-
name: path for name, path in self.voice_presets.items()
|
| 108 |
-
if os.path.exists(path)
|
| 109 |
-
}
|
| 110 |
-
|
| 111 |
-
if not self.available_voices:
|
| 112 |
-
raise gr.Error("No voice presets found. Please add .wav files to the demo/voices directory.")
|
| 113 |
-
|
| 114 |
-
print(f"Found {len(self.available_voices)} voice files in {voices_dir}")
|
| 115 |
-
print(f"Available voices: {', '.join(self.available_voices.keys())}")
|
| 116 |
-
|
| 117 |
-
def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
|
| 118 |
-
"""Read and preprocess audio file."""
|
| 119 |
-
try:
|
| 120 |
-
wav, sr = sf.read(audio_path)
|
| 121 |
-
if len(wav.shape) > 1:
|
| 122 |
-
wav = np.mean(wav, axis=1)
|
| 123 |
-
if sr != target_sr:
|
| 124 |
-
wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
|
| 125 |
-
return wav
|
| 126 |
-
except Exception as e:
|
| 127 |
-
print(f"Error reading audio {audio_path}: {e}")
|
| 128 |
-
return np.array([])
|
| 129 |
-
|
| 130 |
-
def generate_podcast_streaming(self,
|
| 131 |
-
num_speakers: int,
|
| 132 |
-
script: str,
|
| 133 |
-
speaker_1: str = None,
|
| 134 |
-
speaker_2: str = None,
|
| 135 |
-
speaker_3: str = None,
|
| 136 |
-
speaker_4: str = None,
|
| 137 |
-
cfg_scale: float = 1.3) -> Iterator[tuple]:
|
| 138 |
-
try:
|
| 139 |
-
# Reset stop flag and set generating state
|
| 140 |
-
self.stop_generation = False
|
| 141 |
-
self.is_generating = True
|
| 142 |
-
|
| 143 |
-
# Validate inputs
|
| 144 |
-
if not script.strip():
|
| 145 |
-
self.is_generating = False
|
| 146 |
-
raise gr.Error("Error: Please provide a script.")
|
| 147 |
-
|
| 148 |
-
if num_speakers < 1 or num_speakers > 4:
|
| 149 |
-
self.is_generating = False
|
| 150 |
-
raise gr.Error("Error: Number of speakers must be between 1 and 4.")
|
| 151 |
-
|
| 152 |
-
# Collect selected speakers
|
| 153 |
-
selected_speakers = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
|
| 154 |
-
|
| 155 |
-
# Validate speaker selections
|
| 156 |
-
for i, speaker in enumerate(selected_speakers):
|
| 157 |
-
if not speaker or speaker not in self.available_voices:
|
| 158 |
-
self.is_generating = False
|
| 159 |
-
raise gr.Error(f"Error: Please select a valid speaker for Speaker {i+1}.")
|
| 160 |
-
|
| 161 |
-
# Build initial log
|
| 162 |
-
log = f"🎙️ Generating podcast with {num_speakers} speakers\n"
|
| 163 |
-
log += f"📊 Parameters: CFG Scale={cfg_scale}, Inference Steps={self.inference_steps}\n"
|
| 164 |
-
log += f"🎭 Speakers: {', '.join(selected_speakers)}\n"
|
| 165 |
-
|
| 166 |
-
# Check for stop signal
|
| 167 |
-
if self.stop_generation:
|
| 168 |
-
self.is_generating = False
|
| 169 |
-
yield None, "🛑 Generation stopped by user", gr.update(visible=False)
|
| 170 |
-
return
|
| 171 |
-
|
| 172 |
-
# Load voice samples
|
| 173 |
-
voice_samples = []
|
| 174 |
-
for speaker_name in selected_speakers:
|
| 175 |
-
audio_path = self.available_voices[speaker_name]
|
| 176 |
-
audio_data = self.read_audio(audio_path)
|
| 177 |
-
if len(audio_data) == 0:
|
| 178 |
-
self.is_generating = False
|
| 179 |
-
raise gr.Error(f"Error: Failed to load audio for {speaker_name}")
|
| 180 |
-
voice_samples.append(audio_data)
|
| 181 |
-
|
| 182 |
-
# log += f"✅ Loaded {len(voice_samples)} voice samples\n"
|
| 183 |
-
|
| 184 |
-
# Check for stop signal
|
| 185 |
-
if self.stop_generation:
|
| 186 |
-
self.is_generating = False
|
| 187 |
-
yield None, "🛑 Generation stopped by user", gr.update(visible=False)
|
| 188 |
-
return
|
| 189 |
-
|
| 190 |
-
# Parse script to assign speaker ID's
|
| 191 |
-
lines = script.strip().split('\n')
|
| 192 |
-
formatted_script_lines = []
|
| 193 |
-
|
| 194 |
-
for line in lines:
|
| 195 |
-
line = line.strip()
|
| 196 |
-
if not line:
|
| 197 |
-
continue
|
| 198 |
-
|
| 199 |
-
# Check if line already has speaker format
|
| 200 |
-
if line.startswith('Speaker ') and ':' in line:
|
| 201 |
-
formatted_script_lines.append(line)
|
| 202 |
-
else:
|
| 203 |
-
# Auto-assign to speakers in rotation
|
| 204 |
-
speaker_id = len(formatted_script_lines) % num_speakers
|
| 205 |
-
formatted_script_lines.append(f"Speaker {speaker_id}: {line}")
|
| 206 |
-
|
| 207 |
-
formatted_script = '\n'.join(formatted_script_lines)
|
| 208 |
-
log += f"📝 Formatted script with {len(formatted_script_lines)} turns\n\n"
|
| 209 |
-
log += "🔄 Processing with VibeVoice (streaming mode)...\n"
|
| 210 |
-
|
| 211 |
-
# Check for stop signal before processing
|
| 212 |
-
if self.stop_generation:
|
| 213 |
-
self.is_generating = False
|
| 214 |
-
yield None, "🛑 Generation stopped by user", gr.update(visible=False)
|
| 215 |
-
return
|
| 216 |
-
|
| 217 |
-
start_time = time.time()
|
| 218 |
-
|
| 219 |
-
inputs = self.processor(
|
| 220 |
-
text=[formatted_script],
|
| 221 |
-
voice_samples=[voice_samples],
|
| 222 |
-
padding=True,
|
| 223 |
-
return_tensors="pt",
|
| 224 |
-
return_attention_mask=True,
|
| 225 |
-
)
|
| 226 |
-
|
| 227 |
-
# Create audio streamer
|
| 228 |
-
audio_streamer = AudioStreamer(
|
| 229 |
-
batch_size=1,
|
| 230 |
-
stop_signal=None,
|
| 231 |
-
timeout=None
|
| 232 |
-
)
|
| 233 |
-
|
| 234 |
-
# Store current streamer for potential stopping
|
| 235 |
-
self.current_streamer = audio_streamer
|
| 236 |
-
|
| 237 |
-
# Start generation in a separate thread
|
| 238 |
-
generation_thread = threading.Thread(
|
| 239 |
-
target=self._generate_with_streamer,
|
| 240 |
-
args=(inputs, cfg_scale, audio_streamer)
|
| 241 |
-
)
|
| 242 |
-
generation_thread.start()
|
| 243 |
-
|
| 244 |
-
# Wait for generation to actually start producing audio
|
| 245 |
-
time.sleep(1) # Reduced from 3 to 1 second
|
| 246 |
-
|
| 247 |
-
# Check for stop signal after thread start
|
| 248 |
-
if self.stop_generation:
|
| 249 |
-
audio_streamer.end()
|
| 250 |
-
generation_thread.join(timeout=5.0) # Wait up to 5 seconds for thread to finish
|
| 251 |
-
self.is_generating = False
|
| 252 |
-
yield None, "🛑 Generation stopped by user", gr.update(visible=False)
|
| 253 |
-
return
|
| 254 |
-
|
| 255 |
-
# Collect audio chunks as they arrive
|
| 256 |
-
sample_rate = 24000
|
| 257 |
-
all_audio_chunks = [] # For final statistics
|
| 258 |
-
pending_chunks = [] # Buffer for accumulating small chunks
|
| 259 |
-
chunk_count = 0
|
| 260 |
-
last_yield_time = time.time()
|
| 261 |
-
min_yield_interval = 15 # Yield every 15 seconds
|
| 262 |
-
min_chunk_size = sample_rate * 30 # At least 2 seconds of audio
|
| 263 |
-
|
| 264 |
-
# Get the stream for the first (and only) sample
|
| 265 |
-
audio_stream = audio_streamer.get_stream(0)
|
| 266 |
-
|
| 267 |
-
has_yielded_audio = False
|
| 268 |
-
has_received_chunks = False # Track if we received any chunks at all
|
| 269 |
-
|
| 270 |
-
for audio_chunk in audio_stream:
|
| 271 |
-
# Check for stop signal in the streaming loop
|
| 272 |
-
if self.stop_generation:
|
| 273 |
-
audio_streamer.end()
|
| 274 |
-
break
|
| 275 |
-
|
| 276 |
-
chunk_count += 1
|
| 277 |
-
has_received_chunks = True # Mark that we received at least one chunk
|
| 278 |
-
|
| 279 |
-
# Convert tensor to numpy
|
| 280 |
-
if torch.is_tensor(audio_chunk):
|
| 281 |
-
# Convert bfloat16 to float32 first, then to numpy
|
| 282 |
-
if audio_chunk.dtype == torch.bfloat16:
|
| 283 |
-
audio_chunk = audio_chunk.float()
|
| 284 |
-
audio_np = audio_chunk.cpu().numpy().astype(np.float32)
|
| 285 |
-
else:
|
| 286 |
-
audio_np = np.array(audio_chunk, dtype=np.float32)
|
| 287 |
-
|
| 288 |
-
# Ensure audio is 1D and properly normalized
|
| 289 |
-
if len(audio_np.shape) > 1:
|
| 290 |
-
audio_np = audio_np.squeeze()
|
| 291 |
-
|
| 292 |
-
# Convert to 16-bit for Gradio
|
| 293 |
-
audio_16bit = convert_to_16_bit_wav(audio_np)
|
| 294 |
-
|
| 295 |
-
# Store for final statistics
|
| 296 |
-
all_audio_chunks.append(audio_16bit)
|
| 297 |
-
|
| 298 |
-
# Add to pending chunks buffer
|
| 299 |
-
pending_chunks.append(audio_16bit)
|
| 300 |
-
|
| 301 |
-
# Calculate pending audio size
|
| 302 |
-
pending_audio_size = sum(len(chunk) for chunk in pending_chunks)
|
| 303 |
-
current_time = time.time()
|
| 304 |
-
time_since_last_yield = current_time - last_yield_time
|
| 305 |
-
|
| 306 |
-
# Decide whether to yield
|
| 307 |
-
should_yield = False
|
| 308 |
-
if not has_yielded_audio and pending_audio_size >= min_chunk_size:
|
| 309 |
-
# First yield: wait for minimum chunk size
|
| 310 |
-
should_yield = True
|
| 311 |
-
has_yielded_audio = True
|
| 312 |
-
elif has_yielded_audio and (pending_audio_size >= min_chunk_size or time_since_last_yield >= min_yield_interval):
|
| 313 |
-
# Subsequent yields: either enough audio or enough time has passed
|
| 314 |
-
should_yield = True
|
| 315 |
-
|
| 316 |
-
if should_yield and pending_chunks:
|
| 317 |
-
# Concatenate and yield only the new audio chunks
|
| 318 |
-
new_audio = np.concatenate(pending_chunks)
|
| 319 |
-
new_duration = len(new_audio) / sample_rate
|
| 320 |
-
total_duration = sum(len(chunk) for chunk in all_audio_chunks) / sample_rate
|
| 321 |
-
|
| 322 |
-
log_update = log + f"🎵 Streaming: {total_duration:.1f}s generated (chunk {chunk_count})\n"
|
| 323 |
-
|
| 324 |
-
# Yield streaming audio chunk and keep complete_audio as None during streaming
|
| 325 |
-
yield (sample_rate, new_audio), None, log_update, gr.update(visible=True)
|
| 326 |
-
|
| 327 |
-
# Clear pending chunks after yielding
|
| 328 |
-
pending_chunks = []
|
| 329 |
-
last_yield_time = current_time
|
| 330 |
-
|
| 331 |
-
# Yield any remaining chunks
|
| 332 |
-
if pending_chunks:
|
| 333 |
-
final_new_audio = np.concatenate(pending_chunks)
|
| 334 |
-
total_duration = sum(len(chunk) for chunk in all_audio_chunks) / sample_rate
|
| 335 |
-
log_update = log + f"🎵 Streaming final chunk: {total_duration:.1f}s total\n"
|
| 336 |
-
yield (sample_rate, final_new_audio), None, log_update, gr.update(visible=True)
|
| 337 |
-
has_yielded_audio = True # Mark that we yielded audio
|
| 338 |
-
|
| 339 |
-
# Wait for generation to complete (with timeout to prevent hanging)
|
| 340 |
-
generation_thread.join(timeout=5.0) # Increased timeout to 5 seconds
|
| 341 |
-
|
| 342 |
-
# If thread is still alive after timeout, force end
|
| 343 |
-
if generation_thread.is_alive():
|
| 344 |
-
print("Warning: Generation thread did not complete within timeout")
|
| 345 |
-
audio_streamer.end()
|
| 346 |
-
generation_thread.join(timeout=5.0)
|
| 347 |
-
|
| 348 |
-
# Clean up
|
| 349 |
-
self.current_streamer = None
|
| 350 |
-
self.is_generating = False
|
| 351 |
-
|
| 352 |
-
generation_time = time.time() - start_time
|
| 353 |
-
|
| 354 |
-
# Check if stopped by user
|
| 355 |
-
if self.stop_generation:
|
| 356 |
-
yield None, None, "🛑 Generation stopped by user", gr.update(visible=False)
|
| 357 |
-
return
|
| 358 |
-
|
| 359 |
-
# Debug logging
|
| 360 |
-
# print(f"Debug: has_received_chunks={has_received_chunks}, chunk_count={chunk_count}, all_audio_chunks length={len(all_audio_chunks)}")
|
| 361 |
-
|
| 362 |
-
# Check if we received any chunks but didn't yield audio
|
| 363 |
-
if has_received_chunks and not has_yielded_audio and all_audio_chunks:
|
| 364 |
-
# We have chunks but didn't meet the yield criteria, yield them now
|
| 365 |
-
complete_audio = np.concatenate(all_audio_chunks)
|
| 366 |
-
final_duration = len(complete_audio) / sample_rate
|
| 367 |
-
|
| 368 |
-
final_log = log + f"⏱️ Generation completed in {generation_time:.2f} seconds\n"
|
| 369 |
-
final_log += f"🎵 Final audio duration: {final_duration:.2f} seconds\n"
|
| 370 |
-
final_log += f"📊 Total chunks: {chunk_count}\n"
|
| 371 |
-
final_log += "✨ Generation successful! Complete audio is ready.\n"
|
| 372 |
-
final_log += "💡 Not satisfied? You can regenerate or adjust the CFG scale for different results."
|
| 373 |
-
|
| 374 |
-
# Yield the complete audio
|
| 375 |
-
yield None, (sample_rate, complete_audio), final_log, gr.update(visible=False)
|
| 376 |
-
return
|
| 377 |
-
|
| 378 |
-
if not has_received_chunks:
|
| 379 |
-
error_log = log + f"\n❌ Error: No audio chunks were received from the model. Generation time: {generation_time:.2f}s"
|
| 380 |
-
yield None, None, error_log, gr.update(visible=False)
|
| 381 |
-
return
|
| 382 |
-
|
| 383 |
-
if not has_yielded_audio:
|
| 384 |
-
error_log = log + f"\n❌ Error: Audio was generated but not streamed. Chunk count: {chunk_count}"
|
| 385 |
-
yield None, None, error_log, gr.update(visible=False)
|
| 386 |
-
return
|
| 387 |
-
|
| 388 |
-
# Prepare the complete audio
|
| 389 |
-
if all_audio_chunks:
|
| 390 |
-
complete_audio = np.concatenate(all_audio_chunks)
|
| 391 |
-
final_duration = len(complete_audio) / sample_rate
|
| 392 |
-
|
| 393 |
-
final_log = log + f"⏱️ Generation completed in {generation_time:.2f} seconds\n"
|
| 394 |
-
final_log += f"🎵 Final audio duration: {final_duration:.2f} seconds\n"
|
| 395 |
-
final_log += f"📊 Total chunks: {chunk_count}\n"
|
| 396 |
-
final_log += "✨ Generation successful! Complete audio is ready in the 'Complete Audio' tab.\n"
|
| 397 |
-
final_log += "💡 Not satisfied? You can regenerate or adjust the CFG scale for different results."
|
| 398 |
-
|
| 399 |
-
# Final yield: Clear streaming audio and provide complete audio
|
| 400 |
-
yield None, (sample_rate, complete_audio), final_log, gr.update(visible=False)
|
| 401 |
-
else:
|
| 402 |
-
final_log = log + "❌ No audio was generated."
|
| 403 |
-
yield None, None, final_log, gr.update(visible=False)
|
| 404 |
-
|
| 405 |
-
except gr.Error as e:
|
| 406 |
-
# Handle Gradio-specific errors (like input validation)
|
| 407 |
-
self.is_generating = False
|
| 408 |
-
self.current_streamer = None
|
| 409 |
-
error_msg = f"❌ Input Error: {str(e)}"
|
| 410 |
-
print(error_msg)
|
| 411 |
-
yield None, None, error_msg, gr.update(visible=False)
|
| 412 |
-
|
| 413 |
-
except Exception as e:
|
| 414 |
-
self.is_generating = False
|
| 415 |
-
self.current_streamer = None
|
| 416 |
-
error_msg = f"❌ An unexpected error occurred: {str(e)}"
|
| 417 |
-
print(error_msg)
|
| 418 |
-
import traceback
|
| 419 |
-
traceback.print_exc()
|
| 420 |
-
yield None, None, error_msg, gr.update(visible=False)
|
| 421 |
-
|
| 422 |
-
def _generate_with_streamer(self, inputs, cfg_scale, audio_streamer):
|
| 423 |
-
"""Helper method to run generation with streamer in a separate thread."""
|
| 424 |
-
try:
|
| 425 |
-
# Check for stop signal before starting generation
|
| 426 |
-
if self.stop_generation:
|
| 427 |
-
audio_streamer.end()
|
| 428 |
-
return
|
| 429 |
-
|
| 430 |
-
# Define a stop check function that can be called from generate
|
| 431 |
-
def check_stop_generation():
|
| 432 |
-
return self.stop_generation
|
| 433 |
-
|
| 434 |
-
outputs = self.model.generate(
|
| 435 |
-
**inputs,
|
| 436 |
-
max_new_tokens=None,
|
| 437 |
-
cfg_scale=cfg_scale,
|
| 438 |
-
tokenizer=self.processor.tokenizer,
|
| 439 |
-
generation_config={
|
| 440 |
-
'do_sample': False,
|
| 441 |
-
},
|
| 442 |
-
audio_streamer=audio_streamer,
|
| 443 |
-
stop_check_fn=check_stop_generation, # Pass the stop check function
|
| 444 |
-
verbose=False, # Disable verbose in streaming mode
|
| 445 |
-
refresh_negative=True,
|
| 446 |
-
)
|
| 447 |
-
|
| 448 |
-
except Exception as e:
|
| 449 |
-
print(f"Error in generation thread: {e}")
|
| 450 |
-
traceback.print_exc()
|
| 451 |
-
# Make sure to end the stream on error
|
| 452 |
-
audio_streamer.end()
|
| 453 |
-
|
| 454 |
-
def stop_audio_generation(self):
|
| 455 |
-
"""Stop the current audio generation process."""
|
| 456 |
-
self.stop_generation = True
|
| 457 |
-
if self.current_streamer is not None:
|
| 458 |
-
try:
|
| 459 |
-
self.current_streamer.end()
|
| 460 |
-
except Exception as e:
|
| 461 |
-
print(f"Error stopping streamer: {e}")
|
| 462 |
-
print("🛑 Audio generation stop requested")
|
| 463 |
-
|
| 464 |
-
def load_example_scripts(self):
|
| 465 |
-
"""Load example scripts from the text_examples directory."""
|
| 466 |
-
examples_dir = os.path.join(os.path.dirname(__file__), "text_examples")
|
| 467 |
-
self.example_scripts = []
|
| 468 |
-
|
| 469 |
-
# Check if text_examples directory exists
|
| 470 |
-
if not os.path.exists(examples_dir):
|
| 471 |
-
print(f"Warning: text_examples directory not found at {examples_dir}")
|
| 472 |
-
return
|
| 473 |
-
|
| 474 |
-
# Get all .txt files in the text_examples directory
|
| 475 |
-
txt_files = sorted([f for f in os.listdir(examples_dir)
|
| 476 |
-
if f.lower().endswith('.txt') and os.path.isfile(os.path.join(examples_dir, f))])
|
| 477 |
-
|
| 478 |
-
for txt_file in txt_files:
|
| 479 |
-
file_path = os.path.join(examples_dir, txt_file)
|
| 480 |
-
|
| 481 |
-
import re
|
| 482 |
-
# Check if filename contains a time pattern like "45min", "90min", etc.
|
| 483 |
-
time_pattern = re.search(r'(\d+)min', txt_file.lower())
|
| 484 |
-
if time_pattern:
|
| 485 |
-
minutes = int(time_pattern.group(1))
|
| 486 |
-
if minutes > 15:
|
| 487 |
-
print(f"Skipping {txt_file}: duration {minutes} minutes exceeds 15-minute limit")
|
| 488 |
-
continue
|
| 489 |
-
|
| 490 |
-
try:
|
| 491 |
-
with open(file_path, 'r', encoding='utf-8') as f:
|
| 492 |
-
script_content = f.read().strip()
|
| 493 |
-
|
| 494 |
-
# Remove empty lines and lines with only whitespace
|
| 495 |
-
script_content = '\n'.join(line for line in script_content.split('\n') if line.strip())
|
| 496 |
-
|
| 497 |
-
if not script_content:
|
| 498 |
-
continue
|
| 499 |
-
|
| 500 |
-
# Parse the script to determine number of speakers
|
| 501 |
-
num_speakers = self._get_num_speakers_from_script(script_content)
|
| 502 |
-
|
| 503 |
-
# Add to examples list as [num_speakers, script_content]
|
| 504 |
-
self.example_scripts.append([num_speakers, script_content])
|
| 505 |
-
print(f"Loaded example: {txt_file} with {num_speakers} speakers")
|
| 506 |
-
|
| 507 |
-
except Exception as e:
|
| 508 |
-
print(f"Error loading example script {txt_file}: {e}")
|
| 509 |
-
|
| 510 |
-
if self.example_scripts:
|
| 511 |
-
print(f"Successfully loaded {len(self.example_scripts)} example scripts")
|
| 512 |
-
else:
|
| 513 |
-
print("No example scripts were loaded")
|
| 514 |
-
|
| 515 |
-
def _get_num_speakers_from_script(self, script: str) -> int:
|
| 516 |
-
"""Determine the number of unique speakers in a script."""
|
| 517 |
-
import re
|
| 518 |
-
speakers = set()
|
| 519 |
-
|
| 520 |
-
lines = script.strip().split('\n')
|
| 521 |
-
for line in lines:
|
| 522 |
-
# Use regex to find speaker patterns
|
| 523 |
-
match = re.match(r'^Speaker\s+(\d+)\s*:', line.strip(), re.IGNORECASE)
|
| 524 |
-
if match:
|
| 525 |
-
speaker_id = int(match.group(1))
|
| 526 |
-
speakers.add(speaker_id)
|
| 527 |
-
|
| 528 |
-
# If no speakers found, default to 1
|
| 529 |
-
if not speakers:
|
| 530 |
-
return 1
|
| 531 |
-
|
| 532 |
-
# Return the maximum speaker ID + 1 (assuming 0-based indexing)
|
| 533 |
-
# or the count of unique speakers if they're 1-based
|
| 534 |
-
max_speaker = max(speakers)
|
| 535 |
-
min_speaker = min(speakers)
|
| 536 |
-
|
| 537 |
-
if min_speaker == 0:
|
| 538 |
-
return max_speaker + 1
|
| 539 |
-
else:
|
| 540 |
-
# Assume 1-based indexing, return the count
|
| 541 |
-
return len(speakers)
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
def create_demo_interface(demo_instance: VibeVoiceDemo):
|
| 545 |
-
"""Create the Gradio interface with streaming support."""
|
| 546 |
-
|
| 547 |
-
# Custom CSS for high-end aesthetics with lighter theme
|
| 548 |
-
custom_css = """
|
| 549 |
-
/* Modern light theme with gradients */
|
| 550 |
-
.gradio-container {
|
| 551 |
-
background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%);
|
| 552 |
-
font-family: 'SF Pro Display', -apple-system, BlinkMacSystemFont, sans-serif;
|
| 553 |
-
}
|
| 554 |
-
|
| 555 |
-
/* Header styling */
|
| 556 |
-
.main-header {
|
| 557 |
-
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
|
| 558 |
-
padding: 2rem;
|
| 559 |
-
border-radius: 20px;
|
| 560 |
-
margin-bottom: 2rem;
|
| 561 |
-
text-align: center;
|
| 562 |
-
box-shadow: 0 10px 40px rgba(102, 126, 234, 0.3);
|
| 563 |
-
}
|
| 564 |
-
|
| 565 |
-
.main-header h1 {
|
| 566 |
-
color: white;
|
| 567 |
-
font-size: 2.5rem;
|
| 568 |
-
font-weight: 700;
|
| 569 |
-
margin: 0;
|
| 570 |
-
text-shadow: 0 2px 4px rgba(0,0,0,0.3);
|
| 571 |
-
}
|
| 572 |
-
|
| 573 |
-
.main-header p {
|
| 574 |
-
color: rgba(255,255,255,0.9);
|
| 575 |
-
font-size: 1.1rem;
|
| 576 |
-
margin: 0.5rem 0 0 0;
|
| 577 |
-
}
|
| 578 |
-
|
| 579 |
-
/* Card styling */
|
| 580 |
-
.settings-card, .generation-card {
|
| 581 |
-
background: rgba(255, 255, 255, 0.8);
|
| 582 |
-
backdrop-filter: blur(10px);
|
| 583 |
-
border: 1px solid rgba(226, 232, 240, 0.8);
|
| 584 |
-
border-radius: 16px;
|
| 585 |
-
padding: 1.5rem;
|
| 586 |
-
margin-bottom: 1rem;
|
| 587 |
-
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
|
| 588 |
-
}
|
| 589 |
-
|
| 590 |
-
/* Speaker selection styling */
|
| 591 |
-
.speaker-grid {
|
| 592 |
-
display: grid;
|
| 593 |
-
gap: 1rem;
|
| 594 |
-
margin-bottom: 1rem;
|
| 595 |
-
}
|
| 596 |
-
|
| 597 |
-
.speaker-item {
|
| 598 |
-
background: linear-gradient(135deg, #e2e8f0 0%, #cbd5e1 100%);
|
| 599 |
-
border: 1px solid rgba(148, 163, 184, 0.4);
|
| 600 |
-
border-radius: 12px;
|
| 601 |
-
padding: 1rem;
|
| 602 |
-
color: #374151;
|
| 603 |
-
font-weight: 500;
|
| 604 |
-
}
|
| 605 |
-
|
| 606 |
-
/* Streaming indicator */
|
| 607 |
-
.streaming-indicator {
|
| 608 |
-
display: inline-block;
|
| 609 |
-
width: 10px;
|
| 610 |
-
height: 10px;
|
| 611 |
-
background: #22c55e;
|
| 612 |
-
border-radius: 50%;
|
| 613 |
-
margin-right: 8px;
|
| 614 |
-
animation: pulse 1.5s infinite;
|
| 615 |
-
}
|
| 616 |
-
|
| 617 |
-
@keyframes pulse {
|
| 618 |
-
0% { opacity: 1; transform: scale(1); }
|
| 619 |
-
50% { opacity: 0.5; transform: scale(1.1); }
|
| 620 |
-
100% { opacity: 1; transform: scale(1); }
|
| 621 |
-
}
|
| 622 |
-
|
| 623 |
-
/* Queue status styling */
|
| 624 |
-
.queue-status {
|
| 625 |
-
background: linear-gradient(135deg, #f0f9ff 0%, #e0f2fe 100%);
|
| 626 |
-
border: 1px solid rgba(14, 165, 233, 0.3);
|
| 627 |
-
border-radius: 8px;
|
| 628 |
-
padding: 0.75rem;
|
| 629 |
-
margin: 0.5rem 0;
|
| 630 |
-
text-align: center;
|
| 631 |
-
font-size: 0.9rem;
|
| 632 |
-
color: #0369a1;
|
| 633 |
-
}
|
| 634 |
-
|
| 635 |
-
.generate-btn {
|
| 636 |
-
background: linear-gradient(135deg, #059669 0%, #0d9488 100%);
|
| 637 |
-
border: none;
|
| 638 |
-
border-radius: 12px;
|
| 639 |
-
padding: 1rem 2rem;
|
| 640 |
-
color: white;
|
| 641 |
-
font-weight: 600;
|
| 642 |
-
font-size: 1.1rem;
|
| 643 |
-
box-shadow: 0 4px 20px rgba(5, 150, 105, 0.4);
|
| 644 |
-
transition: all 0.3s ease;
|
| 645 |
-
}
|
| 646 |
-
|
| 647 |
-
.generate-btn:hover {
|
| 648 |
-
transform: translateY(-2px);
|
| 649 |
-
box-shadow: 0 6px 25px rgba(5, 150, 105, 0.6);
|
| 650 |
-
}
|
| 651 |
-
|
| 652 |
-
.stop-btn {
|
| 653 |
-
background: linear-gradient(135deg, #ef4444 0%, #dc2626 100%);
|
| 654 |
-
border: none;
|
| 655 |
-
border-radius: 12px;
|
| 656 |
-
padding: 1rem 2rem;
|
| 657 |
-
color: white;
|
| 658 |
-
font-weight: 600;
|
| 659 |
-
font-size: 1.1rem;
|
| 660 |
-
box-shadow: 0 4px 20px rgba(239, 68, 68, 0.4);
|
| 661 |
-
transition: all 0.3s ease;
|
| 662 |
-
}
|
| 663 |
-
|
| 664 |
-
.stop-btn:hover {
|
| 665 |
-
transform: translateY(-2px);
|
| 666 |
-
box-shadow: 0 6px 25px rgba(239, 68, 68, 0.6);
|
| 667 |
-
}
|
| 668 |
-
|
| 669 |
-
/* Audio player styling */
|
| 670 |
-
.audio-output {
|
| 671 |
-
background: linear-gradient(135deg, #f1f5f9 0%, #e2e8f0 100%);
|
| 672 |
-
border-radius: 16px;
|
| 673 |
-
padding: 1.5rem;
|
| 674 |
-
border: 1px solid rgba(148, 163, 184, 0.3);
|
| 675 |
-
}
|
| 676 |
-
|
| 677 |
-
.complete-audio-section {
|
| 678 |
-
margin-top: 1rem;
|
| 679 |
-
padding: 1rem;
|
| 680 |
-
background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%);
|
| 681 |
-
border: 1px solid rgba(34, 197, 94, 0.3);
|
| 682 |
-
border-radius: 12px;
|
| 683 |
-
}
|
| 684 |
-
|
| 685 |
-
/* Text areas */
|
| 686 |
-
.script-input, .log-output {
|
| 687 |
-
background: rgba(255, 255, 255, 0.9) !important;
|
| 688 |
-
border: 1px solid rgba(148, 163, 184, 0.4) !important;
|
| 689 |
-
border-radius: 12px !important;
|
| 690 |
-
color: #1e293b !important;
|
| 691 |
-
font-family: 'JetBrains Mono', monospace !important;
|
| 692 |
-
}
|
| 693 |
-
|
| 694 |
-
.script-input::placeholder {
|
| 695 |
-
color: #64748b !important;
|
| 696 |
-
}
|
| 697 |
-
|
| 698 |
-
/* Sliders */
|
| 699 |
-
.slider-container {
|
| 700 |
-
background: rgba(248, 250, 252, 0.8);
|
| 701 |
-
border: 1px solid rgba(226, 232, 240, 0.6);
|
| 702 |
-
border-radius: 8px;
|
| 703 |
-
padding: 1rem;
|
| 704 |
-
margin: 0.5rem 0;
|
| 705 |
-
}
|
| 706 |
-
|
| 707 |
-
/* Labels and text */
|
| 708 |
-
.gradio-container label {
|
| 709 |
-
color: #374151 !important;
|
| 710 |
-
font-weight: 600 !important;
|
| 711 |
-
}
|
| 712 |
-
|
| 713 |
-
.gradio-container .markdown {
|
| 714 |
-
color: #1f2937 !important;
|
| 715 |
-
}
|
| 716 |
-
|
| 717 |
-
/* Responsive design */
|
| 718 |
-
@media (max-width: 768px) {
|
| 719 |
-
.main-header h1 { font-size: 2rem; }
|
| 720 |
-
.settings-card, .generation-card { padding: 1rem; }
|
| 721 |
-
}
|
| 722 |
-
|
| 723 |
-
/* Random example button styling - more subtle professional color */
|
| 724 |
-
.random-btn {
|
| 725 |
-
background: linear-gradient(135deg, #64748b 0%, #475569 100%);
|
| 726 |
-
border: none;
|
| 727 |
-
border-radius: 12px;
|
| 728 |
-
padding: 1rem 1.5rem;
|
| 729 |
-
color: white;
|
| 730 |
-
font-weight: 600;
|
| 731 |
-
font-size: 1rem;
|
| 732 |
-
box-shadow: 0 4px 20px rgba(100, 116, 139, 0.3);
|
| 733 |
-
transition: all 0.3s ease;
|
| 734 |
-
display: inline-flex;
|
| 735 |
-
align-items: center;
|
| 736 |
-
gap: 0.5rem;
|
| 737 |
-
}
|
| 738 |
-
|
| 739 |
-
.random-btn:hover {
|
| 740 |
-
transform: translateY(-2px);
|
| 741 |
-
box-shadow: 0 6px 25px rgba(100, 116, 139, 0.4);
|
| 742 |
-
background: linear-gradient(135deg, #475569 0%, #334155 100%);
|
| 743 |
-
}
|
| 744 |
-
"""
|
| 745 |
-
|
| 746 |
-
with gr.Blocks(
|
| 747 |
-
title="VibeVoice - AI Podcast Generator",
|
| 748 |
-
css=custom_css,
|
| 749 |
-
theme=gr.themes.Soft(
|
| 750 |
-
primary_hue="blue",
|
| 751 |
-
secondary_hue="purple",
|
| 752 |
-
neutral_hue="slate",
|
| 753 |
-
)
|
| 754 |
-
) as interface:
|
| 755 |
-
|
| 756 |
-
# Header
|
| 757 |
-
gr.HTML("""
|
| 758 |
-
<div class="main-header">
|
| 759 |
-
<h1>🎙️ Vibe Podcasting </h1>
|
| 760 |
-
<p>Generating Long-form Multi-speaker AI Podcast with VibeVoice</p>
|
| 761 |
-
</div>
|
| 762 |
-
""")
|
| 763 |
-
|
| 764 |
-
with gr.Row():
|
| 765 |
-
# Left column - Settings
|
| 766 |
-
with gr.Column(scale=1, elem_classes="settings-card"):
|
| 767 |
-
gr.Markdown("### 🎛️ **Podcast Settings**")
|
| 768 |
-
|
| 769 |
-
# Number of speakers
|
| 770 |
-
num_speakers = gr.Slider(
|
| 771 |
-
minimum=1,
|
| 772 |
-
maximum=4,
|
| 773 |
-
value=2,
|
| 774 |
-
step=1,
|
| 775 |
-
label="Number of Speakers",
|
| 776 |
-
elem_classes="slider-container"
|
| 777 |
-
)
|
| 778 |
-
|
| 779 |
-
# Speaker selection
|
| 780 |
-
gr.Markdown("### 🎭 **Speaker Selection**")
|
| 781 |
-
|
| 782 |
-
available_speaker_names = list(demo_instance.available_voices.keys())
|
| 783 |
-
# default_speakers = available_speaker_names[:4] if len(available_speaker_names) >= 4 else available_speaker_names
|
| 784 |
-
default_speakers = ['en-Alice_woman', 'en-Carter_man', 'en-Frank_man', 'en-Maya_woman']
|
| 785 |
-
|
| 786 |
-
speaker_selections = []
|
| 787 |
-
for i in range(4):
|
| 788 |
-
default_value = default_speakers[i] if i < len(default_speakers) else None
|
| 789 |
-
speaker = gr.Dropdown(
|
| 790 |
-
choices=available_speaker_names,
|
| 791 |
-
value=default_value,
|
| 792 |
-
label=f"Speaker {i+1}",
|
| 793 |
-
visible=(i < 2), # Initially show only first 2 speakers
|
| 794 |
-
elem_classes="speaker-item"
|
| 795 |
-
)
|
| 796 |
-
speaker_selections.append(speaker)
|
| 797 |
-
|
| 798 |
-
# Advanced settings
|
| 799 |
-
gr.Markdown("### ⚙️ **Advanced Settings**")
|
| 800 |
-
|
| 801 |
-
# Sampling parameters (contains all generation settings)
|
| 802 |
-
with gr.Accordion("Generation Parameters", open=False):
|
| 803 |
-
cfg_scale = gr.Slider(
|
| 804 |
-
minimum=1.0,
|
| 805 |
-
maximum=2.0,
|
| 806 |
-
value=1.3,
|
| 807 |
-
step=0.05,
|
| 808 |
-
label="CFG Scale (Guidance Strength)",
|
| 809 |
-
# info="Higher values increase adherence to text",
|
| 810 |
-
elem_classes="slider-container"
|
| 811 |
-
)
|
| 812 |
-
|
| 813 |
-
# Right column - Generation
|
| 814 |
-
with gr.Column(scale=2, elem_classes="generation-card"):
|
| 815 |
-
gr.Markdown("### 📝 **Script Input**")
|
| 816 |
-
|
| 817 |
-
script_input = gr.Textbox(
|
| 818 |
-
label="Conversation Script",
|
| 819 |
-
placeholder="""Enter your podcast script here. You can format it as:
|
| 820 |
-
|
| 821 |
-
Speaker 0: Welcome to our podcast today!
|
| 822 |
-
Speaker 1: Thanks for having me. I'm excited to discuss...
|
| 823 |
-
|
| 824 |
-
Or paste text directly and it will auto-assign speakers.""",
|
| 825 |
-
lines=12,
|
| 826 |
-
max_lines=20,
|
| 827 |
-
elem_classes="script-input"
|
| 828 |
-
)
|
| 829 |
-
|
| 830 |
-
# Button row with Random Example on the left and Generate on the right
|
| 831 |
-
with gr.Row():
|
| 832 |
-
# Random example button (now on the left)
|
| 833 |
-
random_example_btn = gr.Button(
|
| 834 |
-
"🎲 Random Example",
|
| 835 |
-
size="lg",
|
| 836 |
-
variant="secondary",
|
| 837 |
-
elem_classes="random-btn",
|
| 838 |
-
scale=1 # Smaller width
|
| 839 |
-
)
|
| 840 |
-
|
| 841 |
-
# Generate button (now on the right)
|
| 842 |
-
generate_btn = gr.Button(
|
| 843 |
-
"🚀 Generate Podcast",
|
| 844 |
-
size="lg",
|
| 845 |
-
variant="primary",
|
| 846 |
-
elem_classes="generate-btn",
|
| 847 |
-
scale=2 # Wider than random button
|
| 848 |
-
)
|
| 849 |
-
|
| 850 |
-
# Stop button
|
| 851 |
-
stop_btn = gr.Button(
|
| 852 |
-
"🛑 Stop Generation",
|
| 853 |
-
size="lg",
|
| 854 |
-
variant="stop",
|
| 855 |
-
elem_classes="stop-btn",
|
| 856 |
-
visible=False
|
| 857 |
-
)
|
| 858 |
-
|
| 859 |
-
# Streaming status indicator
|
| 860 |
-
streaming_status = gr.HTML(
|
| 861 |
-
value="""
|
| 862 |
-
<div style="background: linear-gradient(135deg, #dcfce7 0%, #bbf7d0 100%);
|
| 863 |
-
border: 1px solid rgba(34, 197, 94, 0.3);
|
| 864 |
-
border-radius: 8px;
|
| 865 |
-
padding: 0.75rem;
|
| 866 |
-
margin: 0.5rem 0;
|
| 867 |
-
text-align: center;
|
| 868 |
-
font-size: 0.9rem;
|
| 869 |
-
color: #166534;">
|
| 870 |
-
<span class="streaming-indicator"></span>
|
| 871 |
-
<strong>LIVE STREAMING</strong> - Audio is being generated in real-time
|
| 872 |
-
</div>
|
| 873 |
-
""",
|
| 874 |
-
visible=False,
|
| 875 |
-
elem_id="streaming-status"
|
| 876 |
-
)
|
| 877 |
-
|
| 878 |
-
# Output section
|
| 879 |
-
gr.Markdown("### 🎵 **Generated Podcast**")
|
| 880 |
-
|
| 881 |
-
# Streaming audio output (outside of tabs for simpler handling)
|
| 882 |
-
audio_output = gr.Audio(
|
| 883 |
-
label="Streaming Audio (Real-time)",
|
| 884 |
-
type="numpy",
|
| 885 |
-
elem_classes="audio-output",
|
| 886 |
-
streaming=True, # Enable streaming mode
|
| 887 |
-
autoplay=True,
|
| 888 |
-
show_download_button=False, # Explicitly show download button
|
| 889 |
-
visible=True
|
| 890 |
-
)
|
| 891 |
-
|
| 892 |
-
# Complete audio output (non-streaming)
|
| 893 |
-
complete_audio_output = gr.Audio(
|
| 894 |
-
label="Complete Podcast (Download after generation)",
|
| 895 |
-
type="numpy",
|
| 896 |
-
elem_classes="audio-output complete-audio-section",
|
| 897 |
-
streaming=False, # Non-streaming mode
|
| 898 |
-
autoplay=False,
|
| 899 |
-
show_download_button=True, # Explicitly show download button
|
| 900 |
-
visible=False # Initially hidden, shown when audio is ready
|
| 901 |
-
)
|
| 902 |
-
|
| 903 |
-
gr.Markdown("""
|
| 904 |
-
*💡 **Streaming**: Audio plays as it's being generated (may have slight pauses)
|
| 905 |
-
*💡 **Complete Audio**: Will appear below after generation finishes*
|
| 906 |
-
""")
|
| 907 |
-
|
| 908 |
-
# Generation log
|
| 909 |
-
log_output = gr.Textbox(
|
| 910 |
-
label="Generation Log",
|
| 911 |
-
lines=8,
|
| 912 |
-
max_lines=15,
|
| 913 |
-
interactive=False,
|
| 914 |
-
elem_classes="log-output"
|
| 915 |
-
)
|
| 916 |
-
|
| 917 |
-
def update_speaker_visibility(num_speakers):
|
| 918 |
-
updates = []
|
| 919 |
-
for i in range(4):
|
| 920 |
-
updates.append(gr.update(visible=(i < num_speakers)))
|
| 921 |
-
return updates
|
| 922 |
-
|
| 923 |
-
num_speakers.change(
|
| 924 |
-
fn=update_speaker_visibility,
|
| 925 |
-
inputs=[num_speakers],
|
| 926 |
-
outputs=speaker_selections
|
| 927 |
-
)
|
| 928 |
-
|
| 929 |
-
# Main generation function with streaming
|
| 930 |
-
def generate_podcast_wrapper(num_speakers, script, *speakers_and_params):
|
| 931 |
-
"""Wrapper function to handle the streaming generation call."""
|
| 932 |
-
try:
|
| 933 |
-
# Extract speakers and parameters
|
| 934 |
-
speakers = speakers_and_params[:4] # First 4 are speaker selections
|
| 935 |
-
cfg_scale = speakers_and_params[4] # CFG scale
|
| 936 |
-
|
| 937 |
-
# Clear outputs and reset visibility at start
|
| 938 |
-
yield None, gr.update(value=None, visible=False), "🎙️ Starting generation...", gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
|
| 939 |
-
|
| 940 |
-
# The generator will yield multiple times
|
| 941 |
-
final_log = "Starting generation..."
|
| 942 |
-
|
| 943 |
-
for streaming_audio, complete_audio, log, streaming_visible in demo_instance.generate_podcast_streaming(
|
| 944 |
-
num_speakers=int(num_speakers),
|
| 945 |
-
script=script,
|
| 946 |
-
speaker_1=speakers[0],
|
| 947 |
-
speaker_2=speakers[1],
|
| 948 |
-
speaker_3=speakers[2],
|
| 949 |
-
speaker_4=speakers[3],
|
| 950 |
-
cfg_scale=cfg_scale
|
| 951 |
-
):
|
| 952 |
-
final_log = log
|
| 953 |
-
|
| 954 |
-
# Check if we have complete audio (final yield)
|
| 955 |
-
if complete_audio is not None:
|
| 956 |
-
# Final state: clear streaming, show complete audio
|
| 957 |
-
yield None, gr.update(value=complete_audio, visible=True), log, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
| 958 |
-
else:
|
| 959 |
-
# Streaming state: update streaming audio only
|
| 960 |
-
if streaming_audio is not None:
|
| 961 |
-
yield streaming_audio, gr.update(visible=False), log, streaming_visible, gr.update(visible=False), gr.update(visible=True)
|
| 962 |
-
else:
|
| 963 |
-
# No new audio, just update status
|
| 964 |
-
yield None, gr.update(visible=False), log, streaming_visible, gr.update(visible=False), gr.update(visible=True)
|
| 965 |
-
|
| 966 |
-
except Exception as e:
|
| 967 |
-
error_msg = f"❌ A critical error occurred in the wrapper: {str(e)}"
|
| 968 |
-
print(error_msg)
|
| 969 |
-
import traceback
|
| 970 |
-
traceback.print_exc()
|
| 971 |
-
# Reset button states on error
|
| 972 |
-
yield None, gr.update(value=None, visible=False), error_msg, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
| 973 |
-
|
| 974 |
-
def stop_generation_handler():
|
| 975 |
-
"""Handle stopping generation."""
|
| 976 |
-
demo_instance.stop_audio_generation()
|
| 977 |
-
# Return values for: log_output, streaming_status, generate_btn, stop_btn
|
| 978 |
-
return "🛑 Generation stopped.", gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
| 979 |
-
|
| 980 |
-
# Add a clear audio function
|
| 981 |
-
def clear_audio_outputs():
|
| 982 |
-
"""Clear both audio outputs before starting new generation."""
|
| 983 |
-
return None, gr.update(value=None, visible=False)
|
| 984 |
|
| 985 |
-
|
| 986 |
-
|
| 987 |
-
|
| 988 |
-
|
| 989 |
-
|
| 990 |
-
queue=False
|
| 991 |
-
).then(
|
| 992 |
-
fn=generate_podcast_wrapper,
|
| 993 |
-
inputs=[num_speakers, script_input] + speaker_selections + [cfg_scale],
|
| 994 |
-
outputs=[audio_output, complete_audio_output, log_output, streaming_status, generate_btn, stop_btn],
|
| 995 |
-
queue=True # Enable Gradio's built-in queue
|
| 996 |
-
)
|
| 997 |
-
|
| 998 |
-
# Connect stop button
|
| 999 |
-
stop_btn.click(
|
| 1000 |
-
fn=stop_generation_handler,
|
| 1001 |
-
inputs=[],
|
| 1002 |
-
outputs=[log_output, streaming_status, generate_btn, stop_btn],
|
| 1003 |
-
queue=False # Don't queue stop requests
|
| 1004 |
-
).then(
|
| 1005 |
-
# Clear both audio outputs after stopping
|
| 1006 |
-
fn=lambda: (None, None),
|
| 1007 |
-
inputs=[],
|
| 1008 |
-
outputs=[audio_output, complete_audio_output],
|
| 1009 |
-
queue=False
|
| 1010 |
-
)
|
| 1011 |
-
|
| 1012 |
-
# Function to randomly select an example
|
| 1013 |
-
def load_random_example():
|
| 1014 |
-
"""Randomly select and load an example script."""
|
| 1015 |
-
import random
|
| 1016 |
-
|
| 1017 |
-
# Get available examples
|
| 1018 |
-
if hasattr(demo_instance, 'example_scripts') and demo_instance.example_scripts:
|
| 1019 |
-
example_scripts = demo_instance.example_scripts
|
| 1020 |
-
else:
|
| 1021 |
-
# Fallback to default
|
| 1022 |
-
example_scripts = [
|
| 1023 |
-
[2, "Speaker 0: Welcome to our AI podcast demonstration!\nSpeaker 1: Thanks for having me. This is exciting!"]
|
| 1024 |
-
]
|
| 1025 |
-
|
| 1026 |
-
# Randomly select one
|
| 1027 |
-
if example_scripts:
|
| 1028 |
-
selected = random.choice(example_scripts)
|
| 1029 |
-
num_speakers_value = selected[0]
|
| 1030 |
-
script_value = selected[1]
|
| 1031 |
-
|
| 1032 |
-
# Return the values to update the UI
|
| 1033 |
-
return num_speakers_value, script_value
|
| 1034 |
-
|
| 1035 |
-
# Default values if no examples
|
| 1036 |
-
return 2, ""
|
| 1037 |
-
|
| 1038 |
-
# Connect random example button
|
| 1039 |
-
random_example_btn.click(
|
| 1040 |
-
fn=load_random_example,
|
| 1041 |
-
inputs=[],
|
| 1042 |
-
outputs=[num_speakers, script_input],
|
| 1043 |
-
queue=False # Don't queue this simple operation
|
| 1044 |
-
)
|
| 1045 |
-
|
| 1046 |
-
# Add usage tips
|
| 1047 |
-
gr.Markdown("""
|
| 1048 |
-
### 💡 **Usage Tips**
|
| 1049 |
-
|
| 1050 |
-
- Click **🚀 Generate Podcast** to start audio generation
|
| 1051 |
-
- **Live Streaming** tab shows audio as it's generated (may have slight pauses)
|
| 1052 |
-
- **Complete Audio** tab provides the full, uninterrupted podcast after generation
|
| 1053 |
-
- During generation, you can click **🛑 Stop Generation** to interrupt the process
|
| 1054 |
-
- The streaming indicator shows real-time generation progress
|
| 1055 |
-
""")
|
| 1056 |
-
|
| 1057 |
-
# Add example scripts
|
| 1058 |
-
gr.Markdown("### 📚 **Example Scripts**")
|
| 1059 |
-
|
| 1060 |
-
# Use dynamically loaded examples if available, otherwise provide a default
|
| 1061 |
-
if hasattr(demo_instance, 'example_scripts') and demo_instance.example_scripts:
|
| 1062 |
-
example_scripts = demo_instance.example_scripts
|
| 1063 |
-
else:
|
| 1064 |
-
# Fallback to a simple default example if no scripts loaded
|
| 1065 |
-
example_scripts = [
|
| 1066 |
-
[1, "Speaker 1: Welcome to our AI podcast demonstration! This is a sample script showing how VibeVoice can generate natural-sounding speech."]
|
| 1067 |
-
]
|
| 1068 |
-
|
| 1069 |
-
gr.Examples(
|
| 1070 |
-
examples=example_scripts,
|
| 1071 |
-
inputs=[num_speakers, script_input],
|
| 1072 |
-
label="Try these example scripts:"
|
| 1073 |
-
)
|
| 1074 |
-
|
| 1075 |
-
return interface
|
| 1076 |
-
|
| 1077 |
-
|
| 1078 |
-
def convert_to_16_bit_wav(data):
|
| 1079 |
-
# Check if data is a tensor and move to cpu
|
| 1080 |
-
if torch.is_tensor(data):
|
| 1081 |
-
data = data.detach().cpu().numpy()
|
| 1082 |
-
|
| 1083 |
-
# Ensure data is numpy array
|
| 1084 |
-
data = np.array(data)
|
| 1085 |
-
|
| 1086 |
-
# Normalize to range [-1, 1] if it's not already
|
| 1087 |
-
if np.max(np.abs(data)) > 1.0:
|
| 1088 |
-
data = data / np.max(np.abs(data))
|
| 1089 |
-
|
| 1090 |
-
# Scale to 16-bit integer range
|
| 1091 |
-
data = (data * 32767).astype(np.int16)
|
| 1092 |
-
return data
|
| 1093 |
-
|
| 1094 |
-
|
| 1095 |
-
def parse_args():
|
| 1096 |
-
parser = argparse.ArgumentParser(description="VibeVoice Gradio Demo")
|
| 1097 |
-
parser.add_argument(
|
| 1098 |
-
"--model_path",
|
| 1099 |
-
type=str,
|
| 1100 |
-
default="/tmp/vibevoice-model",
|
| 1101 |
-
help="Path to the VibeVoice model directory",
|
| 1102 |
-
)
|
| 1103 |
-
parser.add_argument(
|
| 1104 |
-
"--device",
|
| 1105 |
-
type=str,
|
| 1106 |
-
default="cuda" if torch.cuda.is_available() else "cpu",
|
| 1107 |
-
help="Device for inference",
|
| 1108 |
-
)
|
| 1109 |
-
parser.add_argument(
|
| 1110 |
-
"--inference_steps",
|
| 1111 |
-
type=int,
|
| 1112 |
-
default=10,
|
| 1113 |
-
help="Number of inference steps for DDPM (not exposed to users)",
|
| 1114 |
-
)
|
| 1115 |
-
parser.add_argument(
|
| 1116 |
-
"--share",
|
| 1117 |
-
action="store_true",
|
| 1118 |
-
help="Share the demo publicly via Gradio",
|
| 1119 |
-
)
|
| 1120 |
-
parser.add_argument(
|
| 1121 |
-
"--port",
|
| 1122 |
-
type=int,
|
| 1123 |
-
default=7860,
|
| 1124 |
-
help="Port to run the demo on",
|
| 1125 |
-
)
|
| 1126 |
-
|
| 1127 |
-
return parser.parse_args()
|
| 1128 |
-
|
| 1129 |
-
|
| 1130 |
-
def main():
|
| 1131 |
-
"""Main function to run the demo."""
|
| 1132 |
-
args = parse_args()
|
| 1133 |
-
|
| 1134 |
-
set_seed(42) # Set a fixed seed for reproducibility
|
| 1135 |
-
|
| 1136 |
-
print("🎙️ Initializing VibeVoice Demo with Streaming Support...")
|
| 1137 |
-
|
| 1138 |
-
# Initialize demo instance
|
| 1139 |
-
demo_instance = VibeVoiceDemo(
|
| 1140 |
-
model_path=args.model_path,
|
| 1141 |
-
device=args.device,
|
| 1142 |
-
inference_steps=args.inference_steps
|
| 1143 |
-
)
|
| 1144 |
-
|
| 1145 |
-
# Create interface
|
| 1146 |
-
interface = create_demo_interface(demo_instance)
|
| 1147 |
-
|
| 1148 |
-
print(f"🚀 Launching demo on port {args.port}")
|
| 1149 |
-
print(f"📁 Model path: {args.model_path}")
|
| 1150 |
-
print(f"🎭 Available voices: {len(demo_instance.available_voices)}")
|
| 1151 |
-
print(f"🔴 Streaming mode: ENABLED")
|
| 1152 |
-
print(f"🔒 Session isolation: ENABLED")
|
| 1153 |
-
|
| 1154 |
-
# Launch the interface
|
| 1155 |
try:
|
| 1156 |
-
|
| 1157 |
-
|
| 1158 |
-
|
| 1159 |
-
|
| 1160 |
-
|
| 1161 |
-
|
| 1162 |
-
|
| 1163 |
-
|
| 1164 |
-
|
| 1165 |
-
)
|
| 1166 |
-
|
| 1167 |
-
|
| 1168 |
-
|
| 1169 |
-
|
| 1170 |
-
|
| 1171 |
-
|
| 1172 |
-
|
| 1173 |
-
|
| 1174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import subprocess
|
| 3 |
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
# --- 1. Clone the VibeVoice Repository ---
|
| 6 |
+
# Check if the repository directory already exists
|
| 7 |
+
repo_dir = "VibeVoice"
|
| 8 |
+
if not os.path.exists(repo_dir):
|
| 9 |
+
print("Cloning the VibeVoice repository...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
try:
|
| 11 |
+
subprocess.run(
|
| 12 |
+
["git", "clone", "https://github.com/microsoft/VibeVoice.git"],
|
| 13 |
+
check=True,
|
| 14 |
+
capture_output=True,
|
| 15 |
+
text=True
|
| 16 |
+
)
|
| 17 |
+
print("Repository cloned successfully.")
|
| 18 |
+
except subprocess.CalledProcessError as e:
|
| 19 |
+
print(f"Error cloning repository: {e.stderr}")
|
| 20 |
+
sys.exit(1)
|
| 21 |
+
else:
|
| 22 |
+
print("Repository already exists. Skipping clone.")
|
| 23 |
+
|
| 24 |
+
# --- 2. Install the Package ---
|
| 25 |
+
# Navigate into the repository directory
|
| 26 |
+
os.chdir(repo_dir)
|
| 27 |
+
print(f"Changed directory to: {os.getcwd()}")
|
| 28 |
+
|
| 29 |
+
print("Installing the VibeVoice package...")
|
| 30 |
+
try:
|
| 31 |
+
# Use pip to install the package in editable mode
|
| 32 |
+
subprocess.run(
|
| 33 |
+
[sys.executable, "-m", "pip", "install", "-e", "."],
|
| 34 |
+
check=True,
|
| 35 |
+
capture_output=True,
|
| 36 |
+
text=True
|
| 37 |
+
)
|
| 38 |
+
print("Package installed successfully.")
|
| 39 |
+
except subprocess.CalledProcessError as e:
|
| 40 |
+
print(f"Error installing package: {e.stderr}")
|
| 41 |
+
sys.exit(1)
|
| 42 |
+
|
| 43 |
+
# --- 3. Launch the Gradio Demo ---
|
| 44 |
+
# Define the path to the demo script and the model to use
|
| 45 |
+
demo_script_path = "demo/gradio_demo.py"
|
| 46 |
+
model_id = "microsoft/VibeVoice-1.5B"
|
| 47 |
+
|
| 48 |
+
# Construct the command to run the demo
|
| 49 |
+
# The --share flag is necessary to make the Gradio app accessible within the Hugging Face Space environment
|
| 50 |
+
command = [
|
| 51 |
+
"python",
|
| 52 |
+
demo_script_path,
|
| 53 |
+
"--model_path",
|
| 54 |
+
model_id,
|
| 55 |
+
"--share"
|
| 56 |
+
]
|
| 57 |
+
|
| 58 |
+
print(f"Launching Gradio demo with command: {' '.join(command)}")
|
| 59 |
+
# Run the command. This will start the Gradio server and launch the demo.
|
| 60 |
+
# The process will remain active, serving the web interface.
|
| 61 |
+
subprocess.run(command)
|