broadfield-dev commited on
Commit
6b64262
·
verified ·
1 Parent(s): d791173

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -1170
app.py CHANGED
@@ -1,1174 +1,61 @@
1
- """
2
- VibeVoice Gradio Demo - High-Quality Dialogue Generation Interface with Streaming Support
3
- """
4
-
5
- import argparse
6
- import json
7
  import os
 
8
  import sys
9
- import tempfile
10
- import time
11
- from pathlib import Path
12
- from typing import List, Dict, Any, Iterator
13
- from datetime import datetime
14
- import threading
15
- import numpy as np
16
- import gradio as gr
17
- import librosa
18
- import soundfile as sf
19
- import torch
20
- import os
21
- import traceback
22
-
23
- from vibevoice.modular.configuration_vibevoice import VibeVoiceConfig
24
- from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
25
- from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
26
- from vibevoice.modular.streamer import AudioStreamer
27
- from transformers.utils import logging
28
- from transformers import set_seed
29
-
30
- logging.set_verbosity_info()
31
- logger = logging.get_logger(__name__)
32
-
33
-
34
- class VibeVoiceDemo:
35
- def __init__(self, model_path: str, device: str = "cuda", inference_steps: int = 5):
36
- """Initialize the VibeVoice demo with model loading."""
37
- self.model_path = model_path
38
- self.device = device
39
- self.inference_steps = inference_steps
40
- self.is_generating = False # Track generation state
41
- self.stop_generation = False # Flag to stop generation
42
- self.current_streamer = None # Track current audio streamer
43
- self.load_model()
44
- self.setup_voice_presets()
45
- self.load_example_scripts() # Load example scripts
46
-
47
- def load_model(self):
48
- """Load the VibeVoice model and processor."""
49
- print(f"Loading processor & model from {self.model_path}")
50
-
51
- # Load processor
52
- self.processor = VibeVoiceProcessor.from_pretrained(
53
- self.model_path,
54
- )
55
-
56
- # Load model
57
- self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
58
- self.model_path,
59
- torch_dtype=torch.bfloat16,
60
- device_map='cuda',
61
- attn_implementation="flash_attention_2",
62
- )
63
- self.model.eval()
64
-
65
- # Use SDE solver by default
66
- self.model.model.noise_scheduler = self.model.model.noise_scheduler.from_config(
67
- self.model.model.noise_scheduler.config,
68
- algorithm_type='sde-dpmsolver++',
69
- beta_schedule='squaredcos_cap_v2'
70
- )
71
- self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
72
-
73
- if hasattr(self.model.model, 'language_model'):
74
- print(f"Language model attention: {self.model.model.language_model.config._attn_implementation}")
75
-
76
- def setup_voice_presets(self):
77
- """Setup voice presets by scanning the voices directory."""
78
- voices_dir = os.path.join(os.path.dirname(__file__), "voices")
79
-
80
- # Check if voices directory exists
81
- if not os.path.exists(voices_dir):
82
- print(f"Warning: Voices directory not found at {voices_dir}")
83
- self.voice_presets = {}
84
- self.available_voices = {}
85
- return
86
-
87
- # Scan for all WAV files in the voices directory
88
- self.voice_presets = {}
89
-
90
- # Get all .wav files in the voices directory
91
- wav_files = [f for f in os.listdir(voices_dir)
92
- if f.lower().endswith(('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac')) and os.path.isfile(os.path.join(voices_dir, f))]
93
-
94
- # Create dictionary with filename (without extension) as key
95
- for wav_file in wav_files:
96
- # Remove .wav extension to get the name
97
- name = os.path.splitext(wav_file)[0]
98
- # Create full path
99
- full_path = os.path.join(voices_dir, wav_file)
100
- self.voice_presets[name] = full_path
101
-
102
- # Sort the voice presets alphabetically by name for better UI
103
- self.voice_presets = dict(sorted(self.voice_presets.items()))
104
-
105
- # Filter out voices that don't exist (this is now redundant but kept for safety)
106
- self.available_voices = {
107
- name: path for name, path in self.voice_presets.items()
108
- if os.path.exists(path)
109
- }
110
-
111
- if not self.available_voices:
112
- raise gr.Error("No voice presets found. Please add .wav files to the demo/voices directory.")
113
-
114
- print(f"Found {len(self.available_voices)} voice files in {voices_dir}")
115
- print(f"Available voices: {', '.join(self.available_voices.keys())}")
116
-
117
- def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
118
- """Read and preprocess audio file."""
119
- try:
120
- wav, sr = sf.read(audio_path)
121
- if len(wav.shape) > 1:
122
- wav = np.mean(wav, axis=1)
123
- if sr != target_sr:
124
- wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
125
- return wav
126
- except Exception as e:
127
- print(f"Error reading audio {audio_path}: {e}")
128
- return np.array([])
129
-
130
- def generate_podcast_streaming(self,
131
- num_speakers: int,
132
- script: str,
133
- speaker_1: str = None,
134
- speaker_2: str = None,
135
- speaker_3: str = None,
136
- speaker_4: str = None,
137
- cfg_scale: float = 1.3) -> Iterator[tuple]:
138
- try:
139
- # Reset stop flag and set generating state
140
- self.stop_generation = False
141
- self.is_generating = True
142
-
143
- # Validate inputs
144
- if not script.strip():
145
- self.is_generating = False
146
- raise gr.Error("Error: Please provide a script.")
147
-
148
- if num_speakers < 1 or num_speakers > 4:
149
- self.is_generating = False
150
- raise gr.Error("Error: Number of speakers must be between 1 and 4.")
151
-
152
- # Collect selected speakers
153
- selected_speakers = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
154
-
155
- # Validate speaker selections
156
- for i, speaker in enumerate(selected_speakers):
157
- if not speaker or speaker not in self.available_voices:
158
- self.is_generating = False
159
- raise gr.Error(f"Error: Please select a valid speaker for Speaker {i+1}.")
160
-
161
- # Build initial log
162
- log = f"🎙️ Generating podcast with {num_speakers} speakers\n"
163
- log += f"📊 Parameters: CFG Scale={cfg_scale}, Inference Steps={self.inference_steps}\n"
164
- log += f"🎭 Speakers: {', '.join(selected_speakers)}\n"
165
-
166
- # Check for stop signal
167
- if self.stop_generation:
168
- self.is_generating = False
169
- yield None, "🛑 Generation stopped by user", gr.update(visible=False)
170
- return
171
-
172
- # Load voice samples
173
- voice_samples = []
174
- for speaker_name in selected_speakers:
175
- audio_path = self.available_voices[speaker_name]
176
- audio_data = self.read_audio(audio_path)
177
- if len(audio_data) == 0:
178
- self.is_generating = False
179
- raise gr.Error(f"Error: Failed to load audio for {speaker_name}")
180
- voice_samples.append(audio_data)
181
-
182
- # log += f"✅ Loaded {len(voice_samples)} voice samples\n"
183
-
184
- # Check for stop signal
185
- if self.stop_generation:
186
- self.is_generating = False
187
- yield None, "🛑 Generation stopped by user", gr.update(visible=False)
188
- return
189
-
190
- # Parse script to assign speaker ID's
191
- lines = script.strip().split('\n')
192
- formatted_script_lines = []
193
-
194
- for line in lines:
195
- line = line.strip()
196
- if not line:
197
- continue
198
-
199
- # Check if line already has speaker format
200
- if line.startswith('Speaker ') and ':' in line:
201
- formatted_script_lines.append(line)
202
- else:
203
- # Auto-assign to speakers in rotation
204
- speaker_id = len(formatted_script_lines) % num_speakers
205
- formatted_script_lines.append(f"Speaker {speaker_id}: {line}")
206
-
207
- formatted_script = '\n'.join(formatted_script_lines)
208
- log += f"📝 Formatted script with {len(formatted_script_lines)} turns\n\n"
209
- log += "🔄 Processing with VibeVoice (streaming mode)...\n"
210
-
211
- # Check for stop signal before processing
212
- if self.stop_generation:
213
- self.is_generating = False
214
- yield None, "🛑 Generation stopped by user", gr.update(visible=False)
215
- return
216
-
217
- start_time = time.time()
218
-
219
- inputs = self.processor(
220
- text=[formatted_script],
221
- voice_samples=[voice_samples],
222
- padding=True,
223
- return_tensors="pt",
224
- return_attention_mask=True,
225
- )
226
-
227
- # Create audio streamer
228
- audio_streamer = AudioStreamer(
229
- batch_size=1,
230
- stop_signal=None,
231
- timeout=None
232
- )
233
-
234
- # Store current streamer for potential stopping
235
- self.current_streamer = audio_streamer
236
-
237
- # Start generation in a separate thread
238
- generation_thread = threading.Thread(
239
- target=self._generate_with_streamer,
240
- args=(inputs, cfg_scale, audio_streamer)
241
- )
242
- generation_thread.start()
243
-
244
- # Wait for generation to actually start producing audio
245
- time.sleep(1) # Reduced from 3 to 1 second
246
-
247
- # Check for stop signal after thread start
248
- if self.stop_generation:
249
- audio_streamer.end()
250
- generation_thread.join(timeout=5.0) # Wait up to 5 seconds for thread to finish
251
- self.is_generating = False
252
- yield None, "🛑 Generation stopped by user", gr.update(visible=False)
253
- return
254
-
255
- # Collect audio chunks as they arrive
256
- sample_rate = 24000
257
- all_audio_chunks = [] # For final statistics
258
- pending_chunks = [] # Buffer for accumulating small chunks
259
- chunk_count = 0
260
- last_yield_time = time.time()
261
- min_yield_interval = 15 # Yield every 15 seconds
262
- min_chunk_size = sample_rate * 30 # At least 2 seconds of audio
263
-
264
- # Get the stream for the first (and only) sample
265
- audio_stream = audio_streamer.get_stream(0)
266
-
267
- has_yielded_audio = False
268
- has_received_chunks = False # Track if we received any chunks at all
269
-
270
- for audio_chunk in audio_stream:
271
- # Check for stop signal in the streaming loop
272
- if self.stop_generation:
273
- audio_streamer.end()
274
- break
275
-
276
- chunk_count += 1
277
- has_received_chunks = True # Mark that we received at least one chunk
278
-
279
- # Convert tensor to numpy
280
- if torch.is_tensor(audio_chunk):
281
- # Convert bfloat16 to float32 first, then to numpy
282
- if audio_chunk.dtype == torch.bfloat16:
283
- audio_chunk = audio_chunk.float()
284
- audio_np = audio_chunk.cpu().numpy().astype(np.float32)
285
- else:
286
- audio_np = np.array(audio_chunk, dtype=np.float32)
287
-
288
- # Ensure audio is 1D and properly normalized
289
- if len(audio_np.shape) > 1:
290
- audio_np = audio_np.squeeze()
291
-
292
- # Convert to 16-bit for Gradio
293
- audio_16bit = convert_to_16_bit_wav(audio_np)
294
-
295
- # Store for final statistics
296
- all_audio_chunks.append(audio_16bit)
297
-
298
- # Add to pending chunks buffer
299
- pending_chunks.append(audio_16bit)
300
-
301
- # Calculate pending audio size
302
- pending_audio_size = sum(len(chunk) for chunk in pending_chunks)
303
- current_time = time.time()
304
- time_since_last_yield = current_time - last_yield_time
305
-
306
- # Decide whether to yield
307
- should_yield = False
308
- if not has_yielded_audio and pending_audio_size >= min_chunk_size:
309
- # First yield: wait for minimum chunk size
310
- should_yield = True
311
- has_yielded_audio = True
312
- elif has_yielded_audio and (pending_audio_size >= min_chunk_size or time_since_last_yield >= min_yield_interval):
313
- # Subsequent yields: either enough audio or enough time has passed
314
- should_yield = True
315
-
316
- if should_yield and pending_chunks:
317
- # Concatenate and yield only the new audio chunks
318
- new_audio = np.concatenate(pending_chunks)
319
- new_duration = len(new_audio) / sample_rate
320
- total_duration = sum(len(chunk) for chunk in all_audio_chunks) / sample_rate
321
-
322
- log_update = log + f"🎵 Streaming: {total_duration:.1f}s generated (chunk {chunk_count})\n"
323
-
324
- # Yield streaming audio chunk and keep complete_audio as None during streaming
325
- yield (sample_rate, new_audio), None, log_update, gr.update(visible=True)
326
-
327
- # Clear pending chunks after yielding
328
- pending_chunks = []
329
- last_yield_time = current_time
330
-
331
- # Yield any remaining chunks
332
- if pending_chunks:
333
- final_new_audio = np.concatenate(pending_chunks)
334
- total_duration = sum(len(chunk) for chunk in all_audio_chunks) / sample_rate
335
- log_update = log + f"🎵 Streaming final chunk: {total_duration:.1f}s total\n"
336
- yield (sample_rate, final_new_audio), None, log_update, gr.update(visible=True)
337
- has_yielded_audio = True # Mark that we yielded audio
338
-
339
- # Wait for generation to complete (with timeout to prevent hanging)
340
- generation_thread.join(timeout=5.0) # Increased timeout to 5 seconds
341
-
342
- # If thread is still alive after timeout, force end
343
- if generation_thread.is_alive():
344
- print("Warning: Generation thread did not complete within timeout")
345
- audio_streamer.end()
346
- generation_thread.join(timeout=5.0)
347
-
348
- # Clean up
349
- self.current_streamer = None
350
- self.is_generating = False
351
-
352
- generation_time = time.time() - start_time
353
-
354
- # Check if stopped by user
355
- if self.stop_generation:
356
- yield None, None, "🛑 Generation stopped by user", gr.update(visible=False)
357
- return
358
-
359
- # Debug logging
360
- # print(f"Debug: has_received_chunks={has_received_chunks}, chunk_count={chunk_count}, all_audio_chunks length={len(all_audio_chunks)}")
361
-
362
- # Check if we received any chunks but didn't yield audio
363
- if has_received_chunks and not has_yielded_audio and all_audio_chunks:
364
- # We have chunks but didn't meet the yield criteria, yield them now
365
- complete_audio = np.concatenate(all_audio_chunks)
366
- final_duration = len(complete_audio) / sample_rate
367
-
368
- final_log = log + f"⏱️ Generation completed in {generation_time:.2f} seconds\n"
369
- final_log += f"🎵 Final audio duration: {final_duration:.2f} seconds\n"
370
- final_log += f"📊 Total chunks: {chunk_count}\n"
371
- final_log += "✨ Generation successful! Complete audio is ready.\n"
372
- final_log += "💡 Not satisfied? You can regenerate or adjust the CFG scale for different results."
373
-
374
- # Yield the complete audio
375
- yield None, (sample_rate, complete_audio), final_log, gr.update(visible=False)
376
- return
377
-
378
- if not has_received_chunks:
379
- error_log = log + f"\n❌ Error: No audio chunks were received from the model. Generation time: {generation_time:.2f}s"
380
- yield None, None, error_log, gr.update(visible=False)
381
- return
382
-
383
- if not has_yielded_audio:
384
- error_log = log + f"\n❌ Error: Audio was generated but not streamed. Chunk count: {chunk_count}"
385
- yield None, None, error_log, gr.update(visible=False)
386
- return
387
-
388
- # Prepare the complete audio
389
- if all_audio_chunks:
390
- complete_audio = np.concatenate(all_audio_chunks)
391
- final_duration = len(complete_audio) / sample_rate
392
-
393
- final_log = log + f"⏱️ Generation completed in {generation_time:.2f} seconds\n"
394
- final_log += f"🎵 Final audio duration: {final_duration:.2f} seconds\n"
395
- final_log += f"📊 Total chunks: {chunk_count}\n"
396
- final_log += "✨ Generation successful! Complete audio is ready in the 'Complete Audio' tab.\n"
397
- final_log += "💡 Not satisfied? You can regenerate or adjust the CFG scale for different results."
398
-
399
- # Final yield: Clear streaming audio and provide complete audio
400
- yield None, (sample_rate, complete_audio), final_log, gr.update(visible=False)
401
- else:
402
- final_log = log + "❌ No audio was generated."
403
- yield None, None, final_log, gr.update(visible=False)
404
-
405
- except gr.Error as e:
406
- # Handle Gradio-specific errors (like input validation)
407
- self.is_generating = False
408
- self.current_streamer = None
409
- error_msg = f"❌ Input Error: {str(e)}"
410
- print(error_msg)
411
- yield None, None, error_msg, gr.update(visible=False)
412
-
413
- except Exception as e:
414
- self.is_generating = False
415
- self.current_streamer = None
416
- error_msg = f"❌ An unexpected error occurred: {str(e)}"
417
- print(error_msg)
418
- import traceback
419
- traceback.print_exc()
420
- yield None, None, error_msg, gr.update(visible=False)
421
-
422
- def _generate_with_streamer(self, inputs, cfg_scale, audio_streamer):
423
- """Helper method to run generation with streamer in a separate thread."""
424
- try:
425
- # Check for stop signal before starting generation
426
- if self.stop_generation:
427
- audio_streamer.end()
428
- return
429
-
430
- # Define a stop check function that can be called from generate
431
- def check_stop_generation():
432
- return self.stop_generation
433
-
434
- outputs = self.model.generate(
435
- **inputs,
436
- max_new_tokens=None,
437
- cfg_scale=cfg_scale,
438
- tokenizer=self.processor.tokenizer,
439
- generation_config={
440
- 'do_sample': False,
441
- },
442
- audio_streamer=audio_streamer,
443
- stop_check_fn=check_stop_generation, # Pass the stop check function
444
- verbose=False, # Disable verbose in streaming mode
445
- refresh_negative=True,
446
- )
447
-
448
- except Exception as e:
449
- print(f"Error in generation thread: {e}")
450
- traceback.print_exc()
451
- # Make sure to end the stream on error
452
- audio_streamer.end()
453
-
454
- def stop_audio_generation(self):
455
- """Stop the current audio generation process."""
456
- self.stop_generation = True
457
- if self.current_streamer is not None:
458
- try:
459
- self.current_streamer.end()
460
- except Exception as e:
461
- print(f"Error stopping streamer: {e}")
462
- print("🛑 Audio generation stop requested")
463
-
464
- def load_example_scripts(self):
465
- """Load example scripts from the text_examples directory."""
466
- examples_dir = os.path.join(os.path.dirname(__file__), "text_examples")
467
- self.example_scripts = []
468
-
469
- # Check if text_examples directory exists
470
- if not os.path.exists(examples_dir):
471
- print(f"Warning: text_examples directory not found at {examples_dir}")
472
- return
473
-
474
- # Get all .txt files in the text_examples directory
475
- txt_files = sorted([f for f in os.listdir(examples_dir)
476
- if f.lower().endswith('.txt') and os.path.isfile(os.path.join(examples_dir, f))])
477
-
478
- for txt_file in txt_files:
479
- file_path = os.path.join(examples_dir, txt_file)
480
-
481
- import re
482
- # Check if filename contains a time pattern like "45min", "90min", etc.
483
- time_pattern = re.search(r'(\d+)min', txt_file.lower())
484
- if time_pattern:
485
- minutes = int(time_pattern.group(1))
486
- if minutes > 15:
487
- print(f"Skipping {txt_file}: duration {minutes} minutes exceeds 15-minute limit")
488
- continue
489
-
490
- try:
491
- with open(file_path, 'r', encoding='utf-8') as f:
492
- script_content = f.read().strip()
493
-
494
- # Remove empty lines and lines with only whitespace
495
- script_content = '\n'.join(line for line in script_content.split('\n') if line.strip())
496
-
497
- if not script_content:
498
- continue
499
-
500
- # Parse the script to determine number of speakers
501
- num_speakers = self._get_num_speakers_from_script(script_content)
502
-
503
- # Add to examples list as [num_speakers, script_content]
504
- self.example_scripts.append([num_speakers, script_content])
505
- print(f"Loaded example: {txt_file} with {num_speakers} speakers")
506
-
507
- except Exception as e:
508
- print(f"Error loading example script {txt_file}: {e}")
509
-
510
- if self.example_scripts:
511
- print(f"Successfully loaded {len(self.example_scripts)} example scripts")
512
- else:
513
- print("No example scripts were loaded")
514
-
515
- def _get_num_speakers_from_script(self, script: str) -> int:
516
- """Determine the number of unique speakers in a script."""
517
- import re
518
- speakers = set()
519
-
520
- lines = script.strip().split('\n')
521
- for line in lines:
522
- # Use regex to find speaker patterns
523
- match = re.match(r'^Speaker\s+(\d+)\s*:', line.strip(), re.IGNORECASE)
524
- if match:
525
- speaker_id = int(match.group(1))
526
- speakers.add(speaker_id)
527
-
528
- # If no speakers found, default to 1
529
- if not speakers:
530
- return 1
531
-
532
- # Return the maximum speaker ID + 1 (assuming 0-based indexing)
533
- # or the count of unique speakers if they're 1-based
534
- max_speaker = max(speakers)
535
- min_speaker = min(speakers)
536
-
537
- if min_speaker == 0:
538
- return max_speaker + 1
539
- else:
540
- # Assume 1-based indexing, return the count
541
- return len(speakers)
542
-
543
-
544
- def create_demo_interface(demo_instance: VibeVoiceDemo):
545
- """Create the Gradio interface with streaming support."""
546
-
547
- # Custom CSS for high-end aesthetics with lighter theme
548
- custom_css = """
549
- /* Modern light theme with gradients */
550
- .gradio-container {
551
- background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%);
552
- font-family: 'SF Pro Display', -apple-system, BlinkMacSystemFont, sans-serif;
553
- }
554
-
555
- /* Header styling */
556
- .main-header {
557
- background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
558
- padding: 2rem;
559
- border-radius: 20px;
560
- margin-bottom: 2rem;
561
- text-align: center;
562
- box-shadow: 0 10px 40px rgba(102, 126, 234, 0.3);
563
- }
564
-
565
- .main-header h1 {
566
- color: white;
567
- font-size: 2.5rem;
568
- font-weight: 700;
569
- margin: 0;
570
- text-shadow: 0 2px 4px rgba(0,0,0,0.3);
571
- }
572
-
573
- .main-header p {
574
- color: rgba(255,255,255,0.9);
575
- font-size: 1.1rem;
576
- margin: 0.5rem 0 0 0;
577
- }
578
-
579
- /* Card styling */
580
- .settings-card, .generation-card {
581
- background: rgba(255, 255, 255, 0.8);
582
- backdrop-filter: blur(10px);
583
- border: 1px solid rgba(226, 232, 240, 0.8);
584
- border-radius: 16px;
585
- padding: 1.5rem;
586
- margin-bottom: 1rem;
587
- box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
588
- }
589
-
590
- /* Speaker selection styling */
591
- .speaker-grid {
592
- display: grid;
593
- gap: 1rem;
594
- margin-bottom: 1rem;
595
- }
596
-
597
- .speaker-item {
598
- background: linear-gradient(135deg, #e2e8f0 0%, #cbd5e1 100%);
599
- border: 1px solid rgba(148, 163, 184, 0.4);
600
- border-radius: 12px;
601
- padding: 1rem;
602
- color: #374151;
603
- font-weight: 500;
604
- }
605
-
606
- /* Streaming indicator */
607
- .streaming-indicator {
608
- display: inline-block;
609
- width: 10px;
610
- height: 10px;
611
- background: #22c55e;
612
- border-radius: 50%;
613
- margin-right: 8px;
614
- animation: pulse 1.5s infinite;
615
- }
616
-
617
- @keyframes pulse {
618
- 0% { opacity: 1; transform: scale(1); }
619
- 50% { opacity: 0.5; transform: scale(1.1); }
620
- 100% { opacity: 1; transform: scale(1); }
621
- }
622
-
623
- /* Queue status styling */
624
- .queue-status {
625
- background: linear-gradient(135deg, #f0f9ff 0%, #e0f2fe 100%);
626
- border: 1px solid rgba(14, 165, 233, 0.3);
627
- border-radius: 8px;
628
- padding: 0.75rem;
629
- margin: 0.5rem 0;
630
- text-align: center;
631
- font-size: 0.9rem;
632
- color: #0369a1;
633
- }
634
-
635
- .generate-btn {
636
- background: linear-gradient(135deg, #059669 0%, #0d9488 100%);
637
- border: none;
638
- border-radius: 12px;
639
- padding: 1rem 2rem;
640
- color: white;
641
- font-weight: 600;
642
- font-size: 1.1rem;
643
- box-shadow: 0 4px 20px rgba(5, 150, 105, 0.4);
644
- transition: all 0.3s ease;
645
- }
646
-
647
- .generate-btn:hover {
648
- transform: translateY(-2px);
649
- box-shadow: 0 6px 25px rgba(5, 150, 105, 0.6);
650
- }
651
-
652
- .stop-btn {
653
- background: linear-gradient(135deg, #ef4444 0%, #dc2626 100%);
654
- border: none;
655
- border-radius: 12px;
656
- padding: 1rem 2rem;
657
- color: white;
658
- font-weight: 600;
659
- font-size: 1.1rem;
660
- box-shadow: 0 4px 20px rgba(239, 68, 68, 0.4);
661
- transition: all 0.3s ease;
662
- }
663
-
664
- .stop-btn:hover {
665
- transform: translateY(-2px);
666
- box-shadow: 0 6px 25px rgba(239, 68, 68, 0.6);
667
- }
668
-
669
- /* Audio player styling */
670
- .audio-output {
671
- background: linear-gradient(135deg, #f1f5f9 0%, #e2e8f0 100%);
672
- border-radius: 16px;
673
- padding: 1.5rem;
674
- border: 1px solid rgba(148, 163, 184, 0.3);
675
- }
676
-
677
- .complete-audio-section {
678
- margin-top: 1rem;
679
- padding: 1rem;
680
- background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%);
681
- border: 1px solid rgba(34, 197, 94, 0.3);
682
- border-radius: 12px;
683
- }
684
-
685
- /* Text areas */
686
- .script-input, .log-output {
687
- background: rgba(255, 255, 255, 0.9) !important;
688
- border: 1px solid rgba(148, 163, 184, 0.4) !important;
689
- border-radius: 12px !important;
690
- color: #1e293b !important;
691
- font-family: 'JetBrains Mono', monospace !important;
692
- }
693
-
694
- .script-input::placeholder {
695
- color: #64748b !important;
696
- }
697
-
698
- /* Sliders */
699
- .slider-container {
700
- background: rgba(248, 250, 252, 0.8);
701
- border: 1px solid rgba(226, 232, 240, 0.6);
702
- border-radius: 8px;
703
- padding: 1rem;
704
- margin: 0.5rem 0;
705
- }
706
-
707
- /* Labels and text */
708
- .gradio-container label {
709
- color: #374151 !important;
710
- font-weight: 600 !important;
711
- }
712
-
713
- .gradio-container .markdown {
714
- color: #1f2937 !important;
715
- }
716
-
717
- /* Responsive design */
718
- @media (max-width: 768px) {
719
- .main-header h1 { font-size: 2rem; }
720
- .settings-card, .generation-card { padding: 1rem; }
721
- }
722
-
723
- /* Random example button styling - more subtle professional color */
724
- .random-btn {
725
- background: linear-gradient(135deg, #64748b 0%, #475569 100%);
726
- border: none;
727
- border-radius: 12px;
728
- padding: 1rem 1.5rem;
729
- color: white;
730
- font-weight: 600;
731
- font-size: 1rem;
732
- box-shadow: 0 4px 20px rgba(100, 116, 139, 0.3);
733
- transition: all 0.3s ease;
734
- display: inline-flex;
735
- align-items: center;
736
- gap: 0.5rem;
737
- }
738
-
739
- .random-btn:hover {
740
- transform: translateY(-2px);
741
- box-shadow: 0 6px 25px rgba(100, 116, 139, 0.4);
742
- background: linear-gradient(135deg, #475569 0%, #334155 100%);
743
- }
744
- """
745
-
746
- with gr.Blocks(
747
- title="VibeVoice - AI Podcast Generator",
748
- css=custom_css,
749
- theme=gr.themes.Soft(
750
- primary_hue="blue",
751
- secondary_hue="purple",
752
- neutral_hue="slate",
753
- )
754
- ) as interface:
755
-
756
- # Header
757
- gr.HTML("""
758
- <div class="main-header">
759
- <h1>🎙️ Vibe Podcasting </h1>
760
- <p>Generating Long-form Multi-speaker AI Podcast with VibeVoice</p>
761
- </div>
762
- """)
763
-
764
- with gr.Row():
765
- # Left column - Settings
766
- with gr.Column(scale=1, elem_classes="settings-card"):
767
- gr.Markdown("### 🎛️ **Podcast Settings**")
768
-
769
- # Number of speakers
770
- num_speakers = gr.Slider(
771
- minimum=1,
772
- maximum=4,
773
- value=2,
774
- step=1,
775
- label="Number of Speakers",
776
- elem_classes="slider-container"
777
- )
778
-
779
- # Speaker selection
780
- gr.Markdown("### 🎭 **Speaker Selection**")
781
-
782
- available_speaker_names = list(demo_instance.available_voices.keys())
783
- # default_speakers = available_speaker_names[:4] if len(available_speaker_names) >= 4 else available_speaker_names
784
- default_speakers = ['en-Alice_woman', 'en-Carter_man', 'en-Frank_man', 'en-Maya_woman']
785
-
786
- speaker_selections = []
787
- for i in range(4):
788
- default_value = default_speakers[i] if i < len(default_speakers) else None
789
- speaker = gr.Dropdown(
790
- choices=available_speaker_names,
791
- value=default_value,
792
- label=f"Speaker {i+1}",
793
- visible=(i < 2), # Initially show only first 2 speakers
794
- elem_classes="speaker-item"
795
- )
796
- speaker_selections.append(speaker)
797
-
798
- # Advanced settings
799
- gr.Markdown("### ⚙️ **Advanced Settings**")
800
-
801
- # Sampling parameters (contains all generation settings)
802
- with gr.Accordion("Generation Parameters", open=False):
803
- cfg_scale = gr.Slider(
804
- minimum=1.0,
805
- maximum=2.0,
806
- value=1.3,
807
- step=0.05,
808
- label="CFG Scale (Guidance Strength)",
809
- # info="Higher values increase adherence to text",
810
- elem_classes="slider-container"
811
- )
812
-
813
- # Right column - Generation
814
- with gr.Column(scale=2, elem_classes="generation-card"):
815
- gr.Markdown("### 📝 **Script Input**")
816
-
817
- script_input = gr.Textbox(
818
- label="Conversation Script",
819
- placeholder="""Enter your podcast script here. You can format it as:
820
-
821
- Speaker 0: Welcome to our podcast today!
822
- Speaker 1: Thanks for having me. I'm excited to discuss...
823
-
824
- Or paste text directly and it will auto-assign speakers.""",
825
- lines=12,
826
- max_lines=20,
827
- elem_classes="script-input"
828
- )
829
-
830
- # Button row with Random Example on the left and Generate on the right
831
- with gr.Row():
832
- # Random example button (now on the left)
833
- random_example_btn = gr.Button(
834
- "🎲 Random Example",
835
- size="lg",
836
- variant="secondary",
837
- elem_classes="random-btn",
838
- scale=1 # Smaller width
839
- )
840
-
841
- # Generate button (now on the right)
842
- generate_btn = gr.Button(
843
- "🚀 Generate Podcast",
844
- size="lg",
845
- variant="primary",
846
- elem_classes="generate-btn",
847
- scale=2 # Wider than random button
848
- )
849
-
850
- # Stop button
851
- stop_btn = gr.Button(
852
- "🛑 Stop Generation",
853
- size="lg",
854
- variant="stop",
855
- elem_classes="stop-btn",
856
- visible=False
857
- )
858
-
859
- # Streaming status indicator
860
- streaming_status = gr.HTML(
861
- value="""
862
- <div style="background: linear-gradient(135deg, #dcfce7 0%, #bbf7d0 100%);
863
- border: 1px solid rgba(34, 197, 94, 0.3);
864
- border-radius: 8px;
865
- padding: 0.75rem;
866
- margin: 0.5rem 0;
867
- text-align: center;
868
- font-size: 0.9rem;
869
- color: #166534;">
870
- <span class="streaming-indicator"></span>
871
- <strong>LIVE STREAMING</strong> - Audio is being generated in real-time
872
- </div>
873
- """,
874
- visible=False,
875
- elem_id="streaming-status"
876
- )
877
-
878
- # Output section
879
- gr.Markdown("### 🎵 **Generated Podcast**")
880
-
881
- # Streaming audio output (outside of tabs for simpler handling)
882
- audio_output = gr.Audio(
883
- label="Streaming Audio (Real-time)",
884
- type="numpy",
885
- elem_classes="audio-output",
886
- streaming=True, # Enable streaming mode
887
- autoplay=True,
888
- show_download_button=False, # Explicitly show download button
889
- visible=True
890
- )
891
-
892
- # Complete audio output (non-streaming)
893
- complete_audio_output = gr.Audio(
894
- label="Complete Podcast (Download after generation)",
895
- type="numpy",
896
- elem_classes="audio-output complete-audio-section",
897
- streaming=False, # Non-streaming mode
898
- autoplay=False,
899
- show_download_button=True, # Explicitly show download button
900
- visible=False # Initially hidden, shown when audio is ready
901
- )
902
-
903
- gr.Markdown("""
904
- *💡 **Streaming**: Audio plays as it's being generated (may have slight pauses)
905
- *💡 **Complete Audio**: Will appear below after generation finishes*
906
- """)
907
-
908
- # Generation log
909
- log_output = gr.Textbox(
910
- label="Generation Log",
911
- lines=8,
912
- max_lines=15,
913
- interactive=False,
914
- elem_classes="log-output"
915
- )
916
-
917
- def update_speaker_visibility(num_speakers):
918
- updates = []
919
- for i in range(4):
920
- updates.append(gr.update(visible=(i < num_speakers)))
921
- return updates
922
-
923
- num_speakers.change(
924
- fn=update_speaker_visibility,
925
- inputs=[num_speakers],
926
- outputs=speaker_selections
927
- )
928
-
929
- # Main generation function with streaming
930
- def generate_podcast_wrapper(num_speakers, script, *speakers_and_params):
931
- """Wrapper function to handle the streaming generation call."""
932
- try:
933
- # Extract speakers and parameters
934
- speakers = speakers_and_params[:4] # First 4 are speaker selections
935
- cfg_scale = speakers_and_params[4] # CFG scale
936
-
937
- # Clear outputs and reset visibility at start
938
- yield None, gr.update(value=None, visible=False), "🎙️ Starting generation...", gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
939
-
940
- # The generator will yield multiple times
941
- final_log = "Starting generation..."
942
-
943
- for streaming_audio, complete_audio, log, streaming_visible in demo_instance.generate_podcast_streaming(
944
- num_speakers=int(num_speakers),
945
- script=script,
946
- speaker_1=speakers[0],
947
- speaker_2=speakers[1],
948
- speaker_3=speakers[2],
949
- speaker_4=speakers[3],
950
- cfg_scale=cfg_scale
951
- ):
952
- final_log = log
953
-
954
- # Check if we have complete audio (final yield)
955
- if complete_audio is not None:
956
- # Final state: clear streaming, show complete audio
957
- yield None, gr.update(value=complete_audio, visible=True), log, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
958
- else:
959
- # Streaming state: update streaming audio only
960
- if streaming_audio is not None:
961
- yield streaming_audio, gr.update(visible=False), log, streaming_visible, gr.update(visible=False), gr.update(visible=True)
962
- else:
963
- # No new audio, just update status
964
- yield None, gr.update(visible=False), log, streaming_visible, gr.update(visible=False), gr.update(visible=True)
965
-
966
- except Exception as e:
967
- error_msg = f"❌ A critical error occurred in the wrapper: {str(e)}"
968
- print(error_msg)
969
- import traceback
970
- traceback.print_exc()
971
- # Reset button states on error
972
- yield None, gr.update(value=None, visible=False), error_msg, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
973
-
974
- def stop_generation_handler():
975
- """Handle stopping generation."""
976
- demo_instance.stop_audio_generation()
977
- # Return values for: log_output, streaming_status, generate_btn, stop_btn
978
- return "🛑 Generation stopped.", gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
979
-
980
- # Add a clear audio function
981
- def clear_audio_outputs():
982
- """Clear both audio outputs before starting new generation."""
983
- return None, gr.update(value=None, visible=False)
984
 
985
- # Connect generation button with streaming outputs
986
- generate_btn.click(
987
- fn=clear_audio_outputs,
988
- inputs=[],
989
- outputs=[audio_output, complete_audio_output],
990
- queue=False
991
- ).then(
992
- fn=generate_podcast_wrapper,
993
- inputs=[num_speakers, script_input] + speaker_selections + [cfg_scale],
994
- outputs=[audio_output, complete_audio_output, log_output, streaming_status, generate_btn, stop_btn],
995
- queue=True # Enable Gradio's built-in queue
996
- )
997
-
998
- # Connect stop button
999
- stop_btn.click(
1000
- fn=stop_generation_handler,
1001
- inputs=[],
1002
- outputs=[log_output, streaming_status, generate_btn, stop_btn],
1003
- queue=False # Don't queue stop requests
1004
- ).then(
1005
- # Clear both audio outputs after stopping
1006
- fn=lambda: (None, None),
1007
- inputs=[],
1008
- outputs=[audio_output, complete_audio_output],
1009
- queue=False
1010
- )
1011
-
1012
- # Function to randomly select an example
1013
- def load_random_example():
1014
- """Randomly select and load an example script."""
1015
- import random
1016
-
1017
- # Get available examples
1018
- if hasattr(demo_instance, 'example_scripts') and demo_instance.example_scripts:
1019
- example_scripts = demo_instance.example_scripts
1020
- else:
1021
- # Fallback to default
1022
- example_scripts = [
1023
- [2, "Speaker 0: Welcome to our AI podcast demonstration!\nSpeaker 1: Thanks for having me. This is exciting!"]
1024
- ]
1025
-
1026
- # Randomly select one
1027
- if example_scripts:
1028
- selected = random.choice(example_scripts)
1029
- num_speakers_value = selected[0]
1030
- script_value = selected[1]
1031
-
1032
- # Return the values to update the UI
1033
- return num_speakers_value, script_value
1034
-
1035
- # Default values if no examples
1036
- return 2, ""
1037
-
1038
- # Connect random example button
1039
- random_example_btn.click(
1040
- fn=load_random_example,
1041
- inputs=[],
1042
- outputs=[num_speakers, script_input],
1043
- queue=False # Don't queue this simple operation
1044
- )
1045
-
1046
- # Add usage tips
1047
- gr.Markdown("""
1048
- ### 💡 **Usage Tips**
1049
-
1050
- - Click **🚀 Generate Podcast** to start audio generation
1051
- - **Live Streaming** tab shows audio as it's generated (may have slight pauses)
1052
- - **Complete Audio** tab provides the full, uninterrupted podcast after generation
1053
- - During generation, you can click **🛑 Stop Generation** to interrupt the process
1054
- - The streaming indicator shows real-time generation progress
1055
- """)
1056
-
1057
- # Add example scripts
1058
- gr.Markdown("### 📚 **Example Scripts**")
1059
-
1060
- # Use dynamically loaded examples if available, otherwise provide a default
1061
- if hasattr(demo_instance, 'example_scripts') and demo_instance.example_scripts:
1062
- example_scripts = demo_instance.example_scripts
1063
- else:
1064
- # Fallback to a simple default example if no scripts loaded
1065
- example_scripts = [
1066
- [1, "Speaker 1: Welcome to our AI podcast demonstration! This is a sample script showing how VibeVoice can generate natural-sounding speech."]
1067
- ]
1068
-
1069
- gr.Examples(
1070
- examples=example_scripts,
1071
- inputs=[num_speakers, script_input],
1072
- label="Try these example scripts:"
1073
- )
1074
-
1075
- return interface
1076
-
1077
-
1078
- def convert_to_16_bit_wav(data):
1079
- # Check if data is a tensor and move to cpu
1080
- if torch.is_tensor(data):
1081
- data = data.detach().cpu().numpy()
1082
-
1083
- # Ensure data is numpy array
1084
- data = np.array(data)
1085
-
1086
- # Normalize to range [-1, 1] if it's not already
1087
- if np.max(np.abs(data)) > 1.0:
1088
- data = data / np.max(np.abs(data))
1089
-
1090
- # Scale to 16-bit integer range
1091
- data = (data * 32767).astype(np.int16)
1092
- return data
1093
-
1094
-
1095
- def parse_args():
1096
- parser = argparse.ArgumentParser(description="VibeVoice Gradio Demo")
1097
- parser.add_argument(
1098
- "--model_path",
1099
- type=str,
1100
- default="/tmp/vibevoice-model",
1101
- help="Path to the VibeVoice model directory",
1102
- )
1103
- parser.add_argument(
1104
- "--device",
1105
- type=str,
1106
- default="cuda" if torch.cuda.is_available() else "cpu",
1107
- help="Device for inference",
1108
- )
1109
- parser.add_argument(
1110
- "--inference_steps",
1111
- type=int,
1112
- default=10,
1113
- help="Number of inference steps for DDPM (not exposed to users)",
1114
- )
1115
- parser.add_argument(
1116
- "--share",
1117
- action="store_true",
1118
- help="Share the demo publicly via Gradio",
1119
- )
1120
- parser.add_argument(
1121
- "--port",
1122
- type=int,
1123
- default=7860,
1124
- help="Port to run the demo on",
1125
- )
1126
-
1127
- return parser.parse_args()
1128
-
1129
-
1130
- def main():
1131
- """Main function to run the demo."""
1132
- args = parse_args()
1133
-
1134
- set_seed(42) # Set a fixed seed for reproducibility
1135
-
1136
- print("🎙️ Initializing VibeVoice Demo with Streaming Support...")
1137
-
1138
- # Initialize demo instance
1139
- demo_instance = VibeVoiceDemo(
1140
- model_path=args.model_path,
1141
- device=args.device,
1142
- inference_steps=args.inference_steps
1143
- )
1144
-
1145
- # Create interface
1146
- interface = create_demo_interface(demo_instance)
1147
-
1148
- print(f"🚀 Launching demo on port {args.port}")
1149
- print(f"📁 Model path: {args.model_path}")
1150
- print(f"🎭 Available voices: {len(demo_instance.available_voices)}")
1151
- print(f"🔴 Streaming mode: ENABLED")
1152
- print(f"🔒 Session isolation: ENABLED")
1153
-
1154
- # Launch the interface
1155
  try:
1156
- interface.queue(
1157
- max_size=20, # Maximum queue size
1158
- default_concurrency_limit=1 # Process one request at a time
1159
- ).launch(
1160
- share=args.share,
1161
- # server_port=args.port,
1162
- server_name="0.0.0.0" if args.share else "127.0.0.1",
1163
- show_error=True,
1164
- show_api=False # Hide API docs for cleaner interface
1165
- )
1166
- except KeyboardInterrupt:
1167
- print("\n🛑 Shutting down gracefully...")
1168
- except Exception as e:
1169
- print(f"❌ Server error: {e}")
1170
- raise
1171
-
1172
-
1173
- if __name__ == "__main__":
1174
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ import subprocess
3
  import sys
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
+ # --- 1. Clone the VibeVoice Repository ---
6
+ # Check if the repository directory already exists
7
+ repo_dir = "VibeVoice"
8
+ if not os.path.exists(repo_dir):
9
+ print("Cloning the VibeVoice repository...")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  try:
11
+ subprocess.run(
12
+ ["git", "clone", "https://github.com/microsoft/VibeVoice.git"],
13
+ check=True,
14
+ capture_output=True,
15
+ text=True
16
+ )
17
+ print("Repository cloned successfully.")
18
+ except subprocess.CalledProcessError as e:
19
+ print(f"Error cloning repository: {e.stderr}")
20
+ sys.exit(1)
21
+ else:
22
+ print("Repository already exists. Skipping clone.")
23
+
24
+ # --- 2. Install the Package ---
25
+ # Navigate into the repository directory
26
+ os.chdir(repo_dir)
27
+ print(f"Changed directory to: {os.getcwd()}")
28
+
29
+ print("Installing the VibeVoice package...")
30
+ try:
31
+ # Use pip to install the package in editable mode
32
+ subprocess.run(
33
+ [sys.executable, "-m", "pip", "install", "-e", "."],
34
+ check=True,
35
+ capture_output=True,
36
+ text=True
37
+ )
38
+ print("Package installed successfully.")
39
+ except subprocess.CalledProcessError as e:
40
+ print(f"Error installing package: {e.stderr}")
41
+ sys.exit(1)
42
+
43
+ # --- 3. Launch the Gradio Demo ---
44
+ # Define the path to the demo script and the model to use
45
+ demo_script_path = "demo/gradio_demo.py"
46
+ model_id = "microsoft/VibeVoice-1.5B"
47
+
48
+ # Construct the command to run the demo
49
+ # The --share flag is necessary to make the Gradio app accessible within the Hugging Face Space environment
50
+ command = [
51
+ "python",
52
+ demo_script_path,
53
+ "--model_path",
54
+ model_id,
55
+ "--share"
56
+ ]
57
+
58
+ print(f"Launching Gradio demo with command: {' '.join(command)}")
59
+ # Run the command. This will start the Gradio server and launch the demo.
60
+ # The process will remain active, serving the web interface.
61
+ subprocess.run(command)