Wuttipong8146 commited on
Commit
a543ff6
·
verified ·
1 Parent(s): 3b832ea

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -3,7 +3,6 @@ import pdfplumber
3
  from transformers import AutoTokenizer, AutoModelForQuestionAnswering
4
  import torch
5
  from langchain.text_splitter import RecursiveCharacterTextSplitter
6
- from langchain.embeddings import HuggingFaceEmbeddings
7
  from langchain.vectorstores import Chroma
8
  from langchain.chains import ConversationalRetrievalChain
9
  from langchain.memory import ConversationBufferMemory
@@ -41,8 +40,13 @@ if uploaded_file:
41
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
42
  docs = text_splitter.create_documents([pdf_text])
43
 
44
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-xlm-r-multilingual-v1")
45
- vector_store = Chroma.from_documents(documents=docs, embedding=embeddings)
 
 
 
 
 
46
 
47
  retriever = vector_store.as_retriever()
48
  memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
 
3
  from transformers import AutoTokenizer, AutoModelForQuestionAnswering
4
  import torch
5
  from langchain.text_splitter import RecursiveCharacterTextSplitter
 
6
  from langchain.vectorstores import Chroma
7
  from langchain.chains import ConversationalRetrievalChain
8
  from langchain.memory import ConversationBufferMemory
 
40
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
41
  docs = text_splitter.create_documents([pdf_text])
42
 
43
+ # สร้าง embeddings โดยใช้ transformers
44
+ model_name = "sentence-transformers/paraphrase-xlm-r-multilingual-v1"
45
+ embedding_model = AutoModel.from_pretrained(model_name)
46
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
47
+
48
+ # ปรับแต่ง Chroma กับ embeddings ของคุณ
49
+ vector_store = Chroma.from_documents(documents=docs, embedding=embedding_model)
50
 
51
  retriever = vector_store.as_retriever()
52
  memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)