Spaces:
Build error
Build error
| from bark.generation import load_codec_model, generate_text_semantic, grab_best_device | |
| from encodec.utils import convert_audio | |
| from bark.hubert.hubert_manager import HuBERTManager | |
| from bark.hubert.pre_kmeans_hubert import CustomHubert | |
| from bark.hubert.customtokenizer import CustomTokenizer | |
| import torchaudio | |
| import torch | |
| import os | |
| import gradio | |
| def clone_voice(audio_filepath, dest_filename, progress=gradio.Progress(track_tqdm=True)): | |
| # if len(text) < 1: | |
| # raise gradio.Error('No transcription text entered!') | |
| use_gpu = False # not os.environ.get("BARK_FORCE_CPU", False) | |
| progress(0, desc="Loading Codec") | |
| model = load_codec_model(use_gpu=use_gpu) | |
| # From https://github.com/gitmylo/bark-voice-cloning-HuBERT-quantizer | |
| hubert_manager = HuBERTManager() | |
| hubert_manager.make_sure_hubert_installed() | |
| hubert_manager.make_sure_tokenizer_installed() | |
| # From https://github.com/gitmylo/bark-voice-cloning-HuBERT-quantizer | |
| # Load HuBERT for semantic tokens | |
| # Load the HuBERT model | |
| device = grab_best_device(use_gpu) | |
| hubert_model = CustomHubert(checkpoint_path='./models/hubert/hubert.pt').to(device) | |
| # Load the CustomTokenizer model | |
| tokenizer = CustomTokenizer.load_from_checkpoint('./models/hubert/en_tokenizer.pth').to(device) # change to the correct path | |
| progress(0.25, desc="Converting WAV") | |
| # Load and pre-process the audio waveform | |
| wav, sr = torchaudio.load(audio_filepath) | |
| if wav.shape[0] == 2: # Stereo to mono if needed | |
| wav = wav.mean(0, keepdim=True) | |
| wav = convert_audio(wav, sr, model.sample_rate, model.channels) | |
| wav = wav.to(device) | |
| progress(0.5, desc="Extracting codes") | |
| semantic_vectors = hubert_model.forward(wav, input_sample_hz=model.sample_rate) | |
| semantic_tokens = tokenizer.get_token(semantic_vectors) | |
| # Extract discrete codes from EnCodec | |
| with torch.no_grad(): | |
| encoded_frames = model.encode(wav.unsqueeze(0)) | |
| codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze() # [n_q, T] | |
| # get seconds of audio | |
| # seconds = wav.shape[-1] / model.sample_rate | |
| # generate semantic tokens | |
| # semantic_tokens = generate_text_semantic(text, max_gen_duration_s=seconds, top_k=50, top_p=.95, temp=0.7) | |
| # move codes to cpu | |
| codes = codes.cpu().numpy() | |
| # move semantic tokens to cpu | |
| semantic_tokens = semantic_tokens.cpu().numpy() | |
| import numpy as np | |
| output_path = dest_filename + '.npz' | |
| np.savez(output_path, fine_prompt=codes, coarse_prompt=codes[:2, :], semantic_prompt=semantic_tokens) | |
| return ["Finished", output_path] |