import gradio as gr from transformers import pipeline from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Wonder-Griffin/TraXLMistral") pipe = pipeline("text-generation", model="Wonder-Griffin/TraXLMistral") # Assuming `model_path` is the Hugging Face model hub path or a local directory model_path = "Wonder-Griffin/TraXLMistral" # Define this as needed tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() def respond( message, history, system_message, max_tokens, temperature, top_p, ): # Building the conversation history for the model messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Tokenize the input message input_text = " ".join([msg["content"] for msg in messages if msg["role"] == "user"]) input_ids = tokenizer.encode(input_text, return_tensors="pt") # Generate a response from the model output_ids = model.generate( input_ids, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True ) # Decode the generated tokens into a response response = tokenizer.decode(output_ids[0], skip_special_tokens=True) return response # Gradio interface setup demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()