Testes / app.py
Wonder-Griffin's picture
Update app.py
4bc63e0 verified
import gradio as gr
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Wonder-Griffin/TraXLMistral")
pipe = pipeline("text-generation", model="Wonder-Griffin/TraXLMistral")
# Assuming `model_path` is the Hugging Face model hub path or a local directory
model_path = "Wonder-Griffin/TraXLMistral" # Define this as needed
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
def respond(
message,
history,
system_message,
max_tokens,
temperature,
top_p,
):
# Building the conversation history for the model
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# Tokenize the input message
input_text = " ".join([msg["content"] for msg in messages if msg["role"] == "user"])
input_ids = tokenizer.encode(input_text, return_tensors="pt")
# Generate a response from the model
output_ids = model.generate(
input_ids,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True
)
# Decode the generated tokens into a response
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return response
# Gradio interface setup
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()