Spaces:
Running
on
Zero
Running
on
Zero
# -*- coding: utf-8 -*- | |
# Copyright (c) Alibaba, Inc. and its affiliates. | |
import math | |
import re, io | |
import numpy as np | |
import random, torch | |
from PIL import Image | |
import torchvision.transforms as T | |
from collections import defaultdict | |
from scepter.modules.data.dataset.registry import DATASETS | |
from scepter.modules.data.dataset.base_dataset import BaseDataset | |
from scepter.modules.transform.io import pillow_convert | |
from scepter.modules.utils.directory import osp_path | |
from scepter.modules.utils.file_system import FS | |
from torchvision.transforms import InterpolationMode | |
def load_image(prefix, img_path, cvt_type=None): | |
if img_path is None or img_path == '': | |
return None | |
img_path = osp_path(prefix, img_path) | |
with FS.get_object(img_path) as image_bytes: | |
image = Image.open(io.BytesIO(image_bytes)) | |
if cvt_type is not None: | |
image = pillow_convert(image, cvt_type) | |
return image | |
def transform_image(image, std = 0.5, mean = 0.5): | |
return (image.permute(2, 0, 1)/255. - mean)/std | |
def transform_mask(mask): | |
return mask.unsqueeze(0)/255. | |
def ensure_src_align_target_h_mode(src_image, size, image_id, interpolation=InterpolationMode.BILINEAR): | |
# padding mode | |
H, W = size | |
ret_image = [] | |
for one_id in image_id: | |
edit_image = src_image[one_id] | |
_, eH, eW = edit_image.shape | |
scale = H/eH | |
tH, tW = H, int(eW * scale) | |
ret_image.append(T.Resize((tH, tW), interpolation=interpolation, antialias=True)(edit_image)) | |
return ret_image | |
def ensure_src_align_target_padding_mode(src_image, size, image_id, size_h = [], interpolation=InterpolationMode.BILINEAR): | |
# padding mode | |
H, W = size | |
ret_data = [] | |
ret_h = [] | |
for idx, one_id in enumerate(image_id): | |
if len(size_h) < 1: | |
rH = random.randint(int(H / 3), int(H)) | |
else: | |
rH = size_h[idx] | |
ret_h.append(rH) | |
edit_image = src_image[one_id] | |
_, eH, eW = edit_image.shape | |
scale = rH/eH | |
tH, tW = rH, int(eW * scale) | |
edit_image = T.Resize((tH, tW), interpolation=interpolation, antialias=True)(edit_image) | |
# padding | |
delta_w = 0 | |
delta_h = H - tH | |
padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2)) | |
ret_data.append(T.Pad(padding, fill=0, padding_mode="constant")(edit_image).float()) | |
return ret_data, ret_h | |
def ensure_limit_sequence(image, max_seq_len = 4096, d = 16, interpolation=InterpolationMode.BILINEAR): | |
# resize image for max_seq_len, while keep the aspect ratio | |
H, W = image.shape[-2:] | |
scale = min(1.0, math.sqrt(max_seq_len / ((H / d) * (W / d)))) | |
rH = int(H * scale) // d * d # ensure divisible by self.d | |
rW = int(W * scale) // d * d | |
# print(f"{H} {W} -> {rH} {rW}") | |
image = T.Resize((rH, rW), interpolation=interpolation, antialias=True)(image) | |
return image | |
class ACEPlusDataset(BaseDataset): | |
para_dict = { | |
"DELIMITER": { | |
"value": "#;#", | |
"description": "The delimiter for records of data list." | |
}, | |
"FIELDS": { | |
"value": ["data_type", "edit_image", "edit_mask", "ref_image", "target_image", "prompt"], | |
"description": "The fields for every record." | |
}, | |
"PATH_PREFIX": { | |
"value": "", | |
"description": "The path prefix for every input image." | |
}, | |
"EDIT_TYPE_LIST": { | |
"value": [], | |
"description": "The edit type list to be trained for data list." | |
}, | |
"MAX_SEQ_LEN": { | |
"value": 4096, | |
"description": "The max sequence length for input image." | |
}, | |
"D": { | |
"value": 16, | |
"description": "Patch size for resized image." | |
} | |
} | |
para_dict.update(BaseDataset.para_dict) | |
def __init__(self, cfg, logger=None): | |
super().__init__(cfg, logger=logger) | |
delimiter = cfg.get("DELIMITER", "#;#") | |
fields = cfg.get("FIELDS", []) | |
prefix = cfg.get("PATH_PREFIX", "") | |
edit_type_list = cfg.get("EDIT_TYPE_LIST", []) | |
self.modify_mode = cfg.get("MODIFY_MODE", True) | |
self.max_seq_len = cfg.get("MAX_SEQ_LEN", 4096) | |
self.repaiting_scale = cfg.get("REPAINTING_SCALE", 0.5) | |
self.d = cfg.get("D", 16) | |
prompt_file = cfg.DATA_LIST | |
self.items = self.read_data_list(delimiter, | |
fields, | |
prefix, | |
edit_type_list, | |
prompt_file) | |
random.shuffle(self.items) | |
use_num = int(cfg.get('USE_NUM', -1)) | |
if use_num > 0: | |
self.items = self.items[:use_num] | |
def read_data_list(self, delimiter, | |
fields, | |
prefix, | |
edit_type_list, | |
prompt_file): | |
with FS.get_object(prompt_file) as local_data: | |
rows = local_data.decode('utf-8').strip().split('\n') | |
items = list() | |
dtype_level_num = {} | |
for i, row in enumerate(rows): | |
item = {"prefix": prefix} | |
for key, val in zip(fields, row.split(delimiter)): | |
item[key] = val | |
edit_type = item["data_type"] | |
if len(edit_type_list) > 0: | |
for re_pattern in edit_type_list: | |
if re.match(re_pattern, edit_type): | |
items.append(item) | |
if edit_type not in dtype_level_num: | |
dtype_level_num[edit_type] = 0 | |
dtype_level_num[edit_type] += 1 | |
break | |
else: | |
items.append(item) | |
if edit_type not in dtype_level_num: | |
dtype_level_num[edit_type] = 0 | |
dtype_level_num[edit_type] += 1 | |
for edit_type in dtype_level_num: | |
self.logger.info(f"{edit_type} has {dtype_level_num[edit_type]} samples.") | |
return items | |
def __len__(self): | |
return len(self.items) | |
def __getitem__(self, index): | |
item = self._get(index) | |
return self.pipeline(item) | |
def _get(self, index): | |
# normalize | |
sample_id = index%len(self) | |
index = self.items[index%len(self)] | |
prefix = index.get("prefix", "") | |
edit_image = index.get("edit_image", "") | |
edit_mask = index.get("edit_mask", "") | |
ref_image = index.get("ref_image", "") | |
target_image = index.get("target_image", "") | |
prompt = index.get("prompt", "") | |
edit_image = load_image(prefix, edit_image, cvt_type="RGB") if edit_image != "" else None | |
edit_mask = load_image(prefix, edit_mask, cvt_type="L") if edit_mask != "" else None | |
ref_image = load_image(prefix, ref_image, cvt_type="RGB") if ref_image != "" else None | |
target_image = load_image(prefix, target_image, cvt_type="RGB") if target_image != "" else None | |
assert target_image is not None | |
edit_id, ref_id, src_image_list, src_mask_list = [], [], [], [] | |
# parse editing image | |
if edit_image is None: | |
edit_image = Image.new("RGB", target_image.size, (255, 255, 255)) | |
edit_mask = Image.new("L", edit_image.size, 255) | |
elif edit_mask is None: | |
edit_mask = Image.new("L", edit_image.size, 255) | |
src_image_list.append(edit_image) | |
edit_id.append(0) | |
src_mask_list.append(edit_mask) | |
# parse reference image | |
if ref_image is not None: | |
src_image_list.append(ref_image) | |
ref_id.append(1) | |
src_mask_list.append(Image.new("L", ref_image.size, 0)) | |
image = transform_image(torch.tensor(np.array(target_image).astype(np.float32))) | |
if edit_mask is not None: | |
image_mask = transform_mask(torch.tensor(np.array(edit_mask).astype(np.float32))) | |
else: | |
image_mask = Image.new("L", target_image.size, 255) | |
image_mask = transform_mask(torch.tensor(np.array(image_mask).astype(np.float32))) | |
src_image_list = [transform_image(torch.tensor(np.array(im).astype(np.float32))) for im in src_image_list] | |
src_mask_list = [transform_mask(torch.tensor(np.array(im).astype(np.float32))) for im in src_mask_list] | |
# decide the repainting scale for the editing task | |
if len(ref_id) > 0: | |
repainting_scale = 1.0 | |
else: | |
repainting_scale = self.repaiting_scale | |
for e_i in edit_id: | |
src_image_list[e_i] = src_image_list[e_i] * (1 - repainting_scale * src_mask_list[e_i]) | |
size = image.shape[1:] | |
ref_image_list, ret_h = ensure_src_align_target_padding_mode(src_image_list, size, | |
image_id=ref_id, | |
interpolation=InterpolationMode.NEAREST_EXACT) | |
ref_mask_list, ret_h = ensure_src_align_target_padding_mode(src_mask_list, size, | |
size_h=ret_h, | |
image_id=ref_id, | |
interpolation=InterpolationMode.NEAREST_EXACT) | |
edit_image_list = ensure_src_align_target_h_mode(src_image_list, size, | |
image_id=edit_id, | |
interpolation=InterpolationMode.NEAREST_EXACT) | |
edit_mask_list = ensure_src_align_target_h_mode(src_mask_list, size, | |
image_id=edit_id, | |
interpolation=InterpolationMode.NEAREST_EXACT) | |
src_image_list = [torch.cat(ref_image_list + edit_image_list, dim=-1)] | |
src_mask_list = [torch.cat(ref_mask_list + edit_mask_list, dim=-1)] | |
image = torch.cat(ref_image_list + [image], dim=-1) | |
image_mask = torch.cat(ref_mask_list + [image_mask], dim=-1) | |
# limit max sequence length | |
image = ensure_limit_sequence(image, max_seq_len = self.max_seq_len, | |
d = self.d, interpolation=InterpolationMode.BILINEAR) | |
image_mask = ensure_limit_sequence(image_mask, max_seq_len = self.max_seq_len, | |
d = self.d, interpolation=InterpolationMode.NEAREST_EXACT) | |
src_image_list = [ensure_limit_sequence(i, max_seq_len = self.max_seq_len, | |
d = self.d, interpolation=InterpolationMode.BILINEAR) for i in src_image_list] | |
src_mask_list = [ensure_limit_sequence(i, max_seq_len = self.max_seq_len, | |
d = self.d, interpolation=InterpolationMode.NEAREST_EXACT) for i in src_mask_list] | |
if self.modify_mode: | |
# To be modified regions according to mask | |
modify_image_list = [ii * im for ii, im in zip(src_image_list, src_mask_list)] | |
# To be edited regions according to mask | |
src_image_list = [ii * (1 - im) for ii, im in zip(src_image_list, src_mask_list)] | |
else: | |
src_image_list = src_image_list | |
modify_image_list = src_image_list | |
item = { | |
"src_image_list": src_image_list, | |
"src_mask_list": src_mask_list, | |
"modify_image_list": modify_image_list, | |
"image": image, | |
"image_mask": image_mask, | |
"edit_id": edit_id, | |
"ref_id": ref_id, | |
"prompt": prompt, | |
"edit_key": index["edit_key"] if "edit_key" in index else "", | |
"sample_id": sample_id | |
} | |
return item | |
def collate_fn(batch): | |
collect = defaultdict(list) | |
for sample in batch: | |
for k, v in sample.items(): | |
collect[k].append(v) | |
new_batch = dict() | |
for k, v in collect.items(): | |
if all([i is None for i in v]): | |
new_batch[k] = None | |
else: | |
new_batch[k] = v | |
return new_batch | |