change to fastAPI
Browse files
app.py
CHANGED
|
@@ -1,42 +1,82 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import logging
|
| 3 |
-
import
|
| 4 |
-
from
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Configure logging
|
| 7 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 8 |
logger = logging.getLogger(__name__)
|
| 9 |
|
| 10 |
-
# Load
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
| 13 |
logger.info("Model loaded successfully!")
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
)
|
| 26 |
-
summary =
|
| 27 |
-
return summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
# Create Gradio interface
|
| 30 |
demo = gr.Interface(
|
| 31 |
fn=summarize_text,
|
| 32 |
inputs=[
|
| 33 |
gr.Textbox(lines=10, label="Text to Summarize"),
|
| 34 |
-
gr.Slider(50,
|
| 35 |
-
gr.Slider(10,
|
| 36 |
],
|
| 37 |
outputs=gr.Textbox(label="Summary"),
|
| 38 |
title="StudAI Text Summarization",
|
| 39 |
-
description="Powered by
|
| 40 |
)
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import logging
|
| 3 |
+
from fastapi import FastAPI
|
| 4 |
+
from pydantic import BaseModel
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 6 |
+
import torch
|
| 7 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 8 |
|
| 9 |
# Configure logging
|
| 10 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 11 |
logger = logging.getLogger(__name__)
|
| 12 |
|
| 13 |
+
# Load FLAN-T5 model
|
| 14 |
+
model_name = "google/flan-t5-base"
|
| 15 |
+
logger.info(f"Loading {model_name} model...")
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 17 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 18 |
logger.info("Model loaded successfully!")
|
| 19 |
|
| 20 |
+
# -----------------------------
|
| 21 |
+
# REST API SECTION
|
| 22 |
+
# -----------------------------
|
| 23 |
+
api = FastAPI()
|
| 24 |
+
|
| 25 |
+
api.add_middleware(
|
| 26 |
+
CORSMiddleware,
|
| 27 |
+
allow_origins=["*"], # Change to your domain later
|
| 28 |
+
allow_credentials=True,
|
| 29 |
+
allow_methods=["*"],
|
| 30 |
+
allow_headers=["*"],
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
class SummarizeRequest(BaseModel):
|
| 34 |
+
text: str
|
| 35 |
+
max_length: int = 150
|
| 36 |
+
min_length: int = 30
|
| 37 |
+
|
| 38 |
+
@api.post("/summarize")
|
| 39 |
+
def summarize_endpoint(request: SummarizeRequest):
|
| 40 |
+
text = request.text.strip()
|
| 41 |
+
if not text or len(text) < 50:
|
| 42 |
+
return {"summary": text}
|
| 43 |
+
|
| 44 |
+
logger.info(f"Summarizing via API. Length: {len(text)}")
|
| 45 |
+
|
| 46 |
+
input_text = f"summarize: {text}"
|
| 47 |
+
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=1024)
|
| 48 |
+
|
| 49 |
+
# Safe dynamic length handling
|
| 50 |
+
max_tokens = min(request.max_length, 512)
|
| 51 |
+
min_tokens = min(request.min_length, max_tokens - 1)
|
| 52 |
+
|
| 53 |
+
outputs = model.generate(
|
| 54 |
+
**inputs,
|
| 55 |
+
max_new_tokens=max_tokens,
|
| 56 |
+
min_length=min_tokens
|
| 57 |
)
|
| 58 |
+
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 59 |
+
return {"summary": summary}
|
| 60 |
+
|
| 61 |
+
# -----------------------------
|
| 62 |
+
# GRADIO UI SECTION
|
| 63 |
+
# -----------------------------
|
| 64 |
+
def summarize_text(text, max_length=150, min_length=30):
|
| 65 |
+
return summarize_endpoint(SummarizeRequest(text=text, max_length=max_length, min_length=min_length))["summary"]
|
| 66 |
|
|
|
|
| 67 |
demo = gr.Interface(
|
| 68 |
fn=summarize_text,
|
| 69 |
inputs=[
|
| 70 |
gr.Textbox(lines=10, label="Text to Summarize"),
|
| 71 |
+
gr.Slider(50, 512, value=150, label="Max Length"),
|
| 72 |
+
gr.Slider(10, 300, value=30, label="Min Length")
|
| 73 |
],
|
| 74 |
outputs=gr.Textbox(label="Summary"),
|
| 75 |
title="StudAI Text Summarization",
|
| 76 |
+
description="Powered by google/flan-t5-base model"
|
| 77 |
)
|
| 78 |
|
| 79 |
+
# Mount Gradio + API
|
| 80 |
+
app = FastAPI()
|
| 81 |
+
app.mount("/", api)
|
| 82 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, root_path="/", app=app)
|