Upload 2 files
Browse files- main.py +205 -0
- requirements.txt +13 -0
main.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Main.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colaboratory.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/github/payal15604/ONDC-Test/blob/main/Main.ipynb
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
# Commented out IPython magic to ensure Python compatibility.
|
| 11 |
+
!pip install git+https://github.com/PrithivirajDamodaran/ZSIC.git
|
| 12 |
+
!pip install transformers -U
|
| 13 |
+
!pip install pyDecision
|
| 14 |
+
!git clone https://github.com/payal15604/ONDC-Test
|
| 15 |
+
# %cd ONDC-Test
|
| 16 |
+
|
| 17 |
+
from zero_shot_text import zero_shot_text as ztext
|
| 18 |
+
from zero_shot_image import zero_shot_image as zimg
|
| 19 |
+
|
| 20 |
+
from text_summarizer import text_summarizer as t_sum
|
| 21 |
+
from similarity_scoring import calculate_similarity as c_sim
|
| 22 |
+
|
| 23 |
+
import numpy as np
|
| 24 |
+
|
| 25 |
+
"""JSON FILE WILL COME"""
|
| 26 |
+
|
| 27 |
+
import json
|
| 28 |
+
import requests
|
| 29 |
+
|
| 30 |
+
# Define the URL of your API endpoint
|
| 31 |
+
url = "http://localhost:4500/api/datasender"
|
| 32 |
+
|
| 33 |
+
def parse_json(json_data):
|
| 34 |
+
try:
|
| 35 |
+
# Convert boolean literals to uppercase
|
| 36 |
+
json_data = json_data.replace("true", "True").replace("false", "False")
|
| 37 |
+
# Parse JSON data
|
| 38 |
+
parsed_json = json.loads(json_data)
|
| 39 |
+
return parsed_json
|
| 40 |
+
except json.JSONDecodeError:
|
| 41 |
+
print("Error: Invalid JSON data")
|
| 42 |
+
return None
|
| 43 |
+
|
| 44 |
+
try:
|
| 45 |
+
# Send a POST request to the API endpoint
|
| 46 |
+
response = requests.post(url)
|
| 47 |
+
|
| 48 |
+
# Check if the request was successful (status code 200)
|
| 49 |
+
if response.status_code == 200:
|
| 50 |
+
# Extract the JSON data from the response
|
| 51 |
+
received_data = response.text
|
| 52 |
+
|
| 53 |
+
# Parse the JSON data
|
| 54 |
+
parsed_data = parse_json(received_data)
|
| 55 |
+
|
| 56 |
+
if parsed_data:
|
| 57 |
+
# Process each received item
|
| 58 |
+
for item in parsed_data.get("Received data", []):
|
| 59 |
+
# Accessing fields from the item
|
| 60 |
+
name = item.get("name", "")
|
| 61 |
+
short_disc = item.get("short_desc", "")
|
| 62 |
+
long_disc = item.get("long_desc", "")
|
| 63 |
+
image = item.get("images", [])
|
| 64 |
+
symbol = item.get("symbol", "")
|
| 65 |
+
|
| 66 |
+
# Example: Print the fields of each item
|
| 67 |
+
print("Name:", name)
|
| 68 |
+
print("Short Description:", short_disc)
|
| 69 |
+
print("Long Description:", long_disc)
|
| 70 |
+
print("Images:", image)
|
| 71 |
+
print("Symbol:", symbol)
|
| 72 |
+
|
| 73 |
+
# TODO: Process the fields in your ML model
|
| 74 |
+
|
| 75 |
+
else:
|
| 76 |
+
print("Error: Failed to parse JSON data")
|
| 77 |
+
|
| 78 |
+
else:
|
| 79 |
+
# Handle the case where the request was not successful
|
| 80 |
+
print("Error: Failed to fetch data from the API. Status code:", response.status_code)
|
| 81 |
+
|
| 82 |
+
except Exception as e:
|
| 83 |
+
# Handle any exceptions that occur during the request
|
| 84 |
+
print("Error:", e)
|
| 85 |
+
labels = ['coffee','tea','shampoo','face serum','bread','honey','soap','biscuit','milk','chocolate','juice']
|
| 86 |
+
|
| 87 |
+
result = ztext(name, labels)
|
| 88 |
+
|
| 89 |
+
def zero_shot_text_formatted(text, labels):
|
| 90 |
+
result = ztext(text, labels)
|
| 91 |
+
|
| 92 |
+
temp_text_sequence = result['labels']
|
| 93 |
+
temp_text_scores = result['scores']
|
| 94 |
+
formatted_output = f"{temp_text_sequence[0]} = {temp_text_scores[0]}"
|
| 95 |
+
|
| 96 |
+
print(formatted_output)
|
| 97 |
+
return formatted_output
|
| 98 |
+
|
| 99 |
+
def zero_shot_image_formatted(img, labels):
|
| 100 |
+
result = zimg(img, labels)
|
| 101 |
+
|
| 102 |
+
result_score = result['scores'][0]
|
| 103 |
+
result_label = result['labels'][0]
|
| 104 |
+
img_res = f"{result_label} = {result_score}"
|
| 105 |
+
|
| 106 |
+
print(img_res)
|
| 107 |
+
return img_res
|
| 108 |
+
|
| 109 |
+
# temp_name_score = zero_shot_text_formatted(name, labels)
|
| 110 |
+
# temp_sdisc_score = zero_shot_text_formatted(short_disc, labels)
|
| 111 |
+
# temp_ldisc_score = zero_shot_text_formatted(long_disc, labels)
|
| 112 |
+
|
| 113 |
+
# name_sdisc_score = c_sim(temp_name_score, temp_sdisc_score, model="en_core_web_sm")
|
| 114 |
+
# name_ldisc_score = c_sim(temp_name_score, temp_ldisc_score, model="en_core_web_sm")
|
| 115 |
+
# name_sldisc_score = c_sim(temp_sdisc_score, temp_ldisc_score, model="en_core_web_sm")
|
| 116 |
+
|
| 117 |
+
# print(name_sdisc_score)
|
| 118 |
+
# print(name_ldisc_score)
|
| 119 |
+
# print(name_sldisc_score)
|
| 120 |
+
|
| 121 |
+
# temp_summary = t_sum(long_disc)
|
| 122 |
+
# print(temp_summary)
|
| 123 |
+
|
| 124 |
+
# print(temp_name_score)
|
| 125 |
+
# print(temp_sdisc_score)
|
| 126 |
+
# print(temp_ldisc_score)
|
| 127 |
+
# print(temp_summary)
|
| 128 |
+
|
| 129 |
+
"""## **SCORING**"""
|
| 130 |
+
|
| 131 |
+
def name_disc_score(name, short_disc, long_disc, labels):
|
| 132 |
+
n_compute = zero_shot_text_formatted(name, labels)
|
| 133 |
+
sd_compute = zero_shot_text_formatted(short_disc, labels)
|
| 134 |
+
ld_compute = zero_shot_text_formatted(long_disc, labels)
|
| 135 |
+
|
| 136 |
+
n_sd_score = c_sim(n_compute, sd_compute, model="en_core_web_sm")
|
| 137 |
+
n_ld_score = c_sim(n_compute, ld_compute, model="en_core_web_sm")
|
| 138 |
+
sd_ld_score = c_sim(sd_compute, ld_compute, model="en_core_web_sm")
|
| 139 |
+
|
| 140 |
+
return n_sd_score, n_ld_score, sd_ld_score
|
| 141 |
+
|
| 142 |
+
def name_symbol_score(name, symbol, labels):
|
| 143 |
+
n_compute = zero_shot_text_formatted(name, labels)
|
| 144 |
+
s_compute = zero_shot_image_formatted(symbol, labels)
|
| 145 |
+
|
| 146 |
+
n_s_score = c_sim(n_compute, s_compute, model="en_core_web_sm")
|
| 147 |
+
|
| 148 |
+
return n_s_score
|
| 149 |
+
|
| 150 |
+
def name_image_score(name, image_list, labels):
|
| 151 |
+
n_compute = zero_shot_text_formatted(name, labels)
|
| 152 |
+
n_i_scores = []
|
| 153 |
+
|
| 154 |
+
for i in range(len(image_list)):
|
| 155 |
+
i_compute = zero_shot_image_formatted(image_list[i], labels)
|
| 156 |
+
n_i_score = c_sim(n_compute, i_compute)
|
| 157 |
+
n_i_scores.append(n_i_score)
|
| 158 |
+
|
| 159 |
+
return sum(n_i_scores)/len(image_list) #average
|
| 160 |
+
|
| 161 |
+
N_Sd_score, N_Ld_score, Sd_Ld_score = name_disc_score(name, short_disc, long_disc, labels)
|
| 162 |
+
|
| 163 |
+
print((N_Sd_score + N_Ld_score + Sd_Ld_score)/3)
|
| 164 |
+
|
| 165 |
+
N_S_score = name_symbol_score(name, symbol, labels)
|
| 166 |
+
|
| 167 |
+
N_S_score = name_image_score(name, image, labels)
|
| 168 |
+
print(N_S_score)
|
| 169 |
+
|
| 170 |
+
# Required Libraries
|
| 171 |
+
import numpy as np
|
| 172 |
+
|
| 173 |
+
from pyDecision.algorithm import topsis_method
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
# TOPSIS
|
| 178 |
+
def topsis(name, long_disc, short_disc, image, symbol,labels):
|
| 179 |
+
|
| 180 |
+
# Weights
|
| 181 |
+
#[0.3,0.25, 0.2, 0.1, 0.15]
|
| 182 |
+
weights = [0.2,0.2,0.2,0.2,0.2] #assigned manually
|
| 183 |
+
N_i_score = name_image_score(name, image, labels)
|
| 184 |
+
N_Sd_score, N_Ld_score, Sd_Ld_score = name_disc_score(name, short_disc, long_disc, labels)
|
| 185 |
+
N_S_score = name_symbol_score(name, symbol, labels)
|
| 186 |
+
# Load Criterion Type: 'max' or 'min'
|
| 187 |
+
criterion_type = ['max', 'max', 'max', 'max','max']
|
| 188 |
+
|
| 189 |
+
# Dataset
|
| 190 |
+
dataset = np.array([
|
| 191 |
+
[N_S_score, N_i_score, N_Sd_score, N_Ld_score, Sd_Ld_score],
|
| 192 |
+
[0.87, 0.9, 0.47, 0.46, 0.5],
|
| 193 |
+
[1,0.67,0.57,0.56,0.8]#demo data
|
| 194 |
+
])
|
| 195 |
+
|
| 196 |
+
# Call TOPSIS
|
| 197 |
+
relative_closeness = topsis_method(dataset, weights, criterion_type, graph = False, verbose = True)
|
| 198 |
+
return relative_closeness
|
| 199 |
+
|
| 200 |
+
relative_closeness=topsis(name, long_disc, short_disc, image, symbol,labels)
|
| 201 |
+
print(relative_closeness)
|
| 202 |
+
|
| 203 |
+
## Call TOPSIS
|
| 204 |
+
#relative_closeness = topsis_method(dataset, weights, criterion_type, graph = False, verbose = True)
|
| 205 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tensorflow
|
| 2 |
+
transformers -U
|
| 3 |
+
pipeline
|
| 4 |
+
AutoTokenizer
|
| 5 |
+
AutoModelForSequenceClassification
|
| 6 |
+
T5ForConditionalGeneration
|
| 7 |
+
spacy
|
| 8 |
+
NLTK
|
| 9 |
+
git+https://github.com/PrithivirajDamodaran/ZSIC.git
|
| 10 |
+
ZSIC
|
| 11 |
+
pyDecision
|
| 12 |
+
numpy
|
| 13 |
+
|