File size: 2,457 Bytes
bc6b2f9
 
 
4047600
ccf823d
 
bc6b2f9
4047600
bc6b2f9
 
 
ccf823d
 
 
 
 
 
 
 
 
 
 
bc6b2f9
ccf823d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc6b2f9
 
ccf823d
 
 
 
 
 
 
bc6b2f9
 
 
 
ccf823d
 
bc6b2f9
 
ccf823d
 
bc6b2f9
 
 
 
ccf823d
bc6b2f9
 
ccf823d
 
 
 
 
bc6b2f9
84ba93c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import gradio as gr
from PIL import Image
import hopsworks
import os
import imageio.v3 as iio
import inspect

project = hopsworks.login(project="test42",api_key_value=os.environ.get("HOPSWORKS_API_KEYS"))
fs = project.get_feature_store()

dataset_api = project.get_dataset_api()
print(inspect.signature(dataset_api.download))
dataset_api.download("Resources/images/latest_iris.png",overwrite=True)
dataset_api.download("Resources/images/actual_iris.png",overwrite=True)
dataset_api.download("Resources/images/df_recent.png",overwrite=True)
dataset_api.download("Resources/images/confusion_matrix.png",overwrite=True)
x=0
def update():
    dataset_api.download("Resources/images/latest_iris.png",overwrite=True)
    dataset_api.download("Resources/images/actual_iris.png",overwrite=True)
    dataset_api.download("Resources/images/df_recent.png",overwrite=True)
    dataset_api.download("Resources/images/confusion_matrix.png",overwrite=True)

def update_latest_iris_img():
    im = iio.imread('latest_iris.png')
    return im

def update_actual_iris_img():
    im = iio.imread('actual_iris.png')
    return im

def update_df_recent_img():
    im = iio.imread('df_recent.png')
    return im

def update_confusion_matrix_img():
    im = iio.imread('confusion_matrix.png')
    return im

with gr.Blocks() as demo:
    with gr.Row():
      with gr.Column():
          load=gr.Button("Load")
          load.click(fn=update)
      with gr.Column():
          refresh=gr.Button("Refresh")

    with gr.Row():
      with gr.Column():
          gr.Label("Today's Predicted Image")
          input_img = gr.Image("latest_iris.png", elem_id="predicted-img")
          refresh.click(update_latest_iris_img,outputs=input_img)
          
      with gr.Column():          
          gr.Label("Today's Actual Image")
          input_img = gr.Image("actual_iris.png", elem_id="actual-img")
          refresh.click(update_actual_iris_img,outputs=input_img)
    with gr.Row():
      with gr.Column():
          gr.Label("Recent Prediction History")
          input_img = gr.Image("df_recent.png", elem_id="recent-predictions")
          refresh.click(update_df_recent_img,outputs=input_img)
      with gr.Column():          
          gr.Label("Confusion Maxtrix with Historical Prediction Performance")
          input_img = gr.Image("confusion_matrix.png", elem_id="confusion-matrix")
          refresh.click(update_confusion_matrix_img,outputs=input_img)




demo.launch()