Upload 3 files
Browse files- app.py +32 -0
- requirements.txt +2 -0
- utils.py +249 -0
app.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from utils import *
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def gap_func(demand,inventory,customer_1_proportion_percent,high_price,low_price):
|
| 6 |
+
customer_1_prop = customer_1_proportion_percent / 100
|
| 7 |
+
model = ModelInfo(ARRIVAL_RATE=demand,
|
| 8 |
+
STARTING_INVENTORY=inventory,
|
| 9 |
+
CUSTOMER_1_PROP=customer_1_prop,
|
| 10 |
+
CUSTOMER_2_PROP=1-customer_1_prop,
|
| 11 |
+
HIGH_PRICE=high_price,
|
| 12 |
+
LOW_PRICE=low_price)
|
| 13 |
+
gap = gap_between_dynamic_and_static(model=model)
|
| 14 |
+
dynamic = get_best_dynamic_threshold(model=model)
|
| 15 |
+
dynamic_rev,inv_threshold = dynamic
|
| 16 |
+
static_result= get_static_pricing(model=model)
|
| 17 |
+
low_low,high_high,high_low = static_result
|
| 18 |
+
|
| 19 |
+
return gap,dynamic_rev,inv_threshold,low_low,high_high,high_low
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
demo = gr.Interface(fn=gap_func,
|
| 23 |
+
inputs=["number","number",gr.Slider(0, 100,value=50),"number","number"],
|
| 24 |
+
outputs=[gr.Textbox(label='Gap'),
|
| 25 |
+
gr.Textbox(label='Dynamic'),
|
| 26 |
+
gr.Textbox(label='inventory_threshold'),
|
| 27 |
+
gr.Textbox(label='Low-Low'),
|
| 28 |
+
gr.Textbox(label='High-High'),
|
| 29 |
+
gr.Textbox(label='High-Low')])
|
| 30 |
+
|
| 31 |
+
if __name__ == "__main__":
|
| 32 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
scipy
|
utils.py
ADDED
|
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from scipy.stats import poisson
|
| 2 |
+
import math
|
| 3 |
+
|
| 4 |
+
class ModelInfo:
|
| 5 |
+
|
| 6 |
+
def __init__(self,ARRIVAL_RATE,STARTING_INVENTORY,CUSTOMER_1_PROP,CUSTOMER_2_PROP,
|
| 7 |
+
HIGH_PRICE,LOW_PRICE) -> None:
|
| 8 |
+
self.ARRIVAL_RATE =ARRIVAL_RATE
|
| 9 |
+
self.STARTING_INVENTORY = STARTING_INVENTORY
|
| 10 |
+
self.CUSTOMER_1_PROP = CUSTOMER_1_PROP
|
| 11 |
+
self.CUSTOMER_2_PROP = CUSTOMER_2_PROP
|
| 12 |
+
self.HIGH_PRICE = HIGH_PRICE
|
| 13 |
+
self.LOW_PRICE = LOW_PRICE
|
| 14 |
+
|
| 15 |
+
def set_ARRIVAL_RATE(self,ARRIVAL_RATE):
|
| 16 |
+
return ModelInfo(ARRIVAL_RATE=ARRIVAL_RATE,
|
| 17 |
+
STARTING_INVENTORY=self.STARTING_INVENTORY,
|
| 18 |
+
CUSTOMER_1_PROP=self.CUSTOMER_1_PROP,
|
| 19 |
+
CUSTOMER_2_PROP=self.CUSTOMER_2_PROP,
|
| 20 |
+
HIGH_PRICE=self.HIGH_PRICE,
|
| 21 |
+
LOW_PRICE=self.LOW_PRICE)
|
| 22 |
+
|
| 23 |
+
def set_STARTING_INVENTORY(self,STARTING_INVENTORY):
|
| 24 |
+
return ModelInfo(ARRIVAL_RATE=self.ARRIVAL_RATE,
|
| 25 |
+
STARTING_INVENTORY=STARTING_INVENTORY,
|
| 26 |
+
CUSTOMER_1_PROP=self.CUSTOMER_1_PROP,
|
| 27 |
+
CUSTOMER_2_PROP=self.CUSTOMER_2_PROP,
|
| 28 |
+
HIGH_PRICE=self.HIGH_PRICE,
|
| 29 |
+
LOW_PRICE=self.LOW_PRICE)
|
| 30 |
+
|
| 31 |
+
def set_CUSTOMER_1_PROP(self,CUSTOMER_1_PROP):
|
| 32 |
+
return ModelInfo(ARRIVAL_RATE=self.ARRIVAL_RATE,
|
| 33 |
+
STARTING_INVENTORY=self.STARTING_INVENTORY,
|
| 34 |
+
CUSTOMER_1_PROP=CUSTOMER_1_PROP,
|
| 35 |
+
CUSTOMER_2_PROP=self.CUSTOMER_2_PROP,
|
| 36 |
+
HIGH_PRICE=self.HIGH_PRICE,
|
| 37 |
+
LOW_PRICE=self.LOW_PRICE)
|
| 38 |
+
|
| 39 |
+
def set_CUSTOMER_2_PROP(self,CUSTOMER_2_PROP):
|
| 40 |
+
return ModelInfo(ARRIVAL_RATE=self.ARRIVAL_RATE,
|
| 41 |
+
STARTING_INVENTORY=self.STARTING_INVENTORY,
|
| 42 |
+
CUSTOMER_1_PROP=self.CUSTOMER_1_PROP,
|
| 43 |
+
CUSTOMER_2_PROP=CUSTOMER_2_PROP,
|
| 44 |
+
HIGH_PRICE=self.HIGH_PRICE,
|
| 45 |
+
LOW_PRICE=self.LOW_PRICE)
|
| 46 |
+
|
| 47 |
+
def set_HIGH_PRICE(self,HIGH_PRICE):
|
| 48 |
+
return ModelInfo(ARRIVAL_RATE=self.ARRIVAL_RATE,
|
| 49 |
+
STARTING_INVENTORY=self.STARTING_INVENTORY,
|
| 50 |
+
CUSTOMER_1_PROP=self.CUSTOMER_1_PROP,
|
| 51 |
+
CUSTOMER_2_PROP=self.CUSTOMER_2_PROP,
|
| 52 |
+
HIGH_PRICE=HIGH_PRICE,
|
| 53 |
+
LOW_PRICE=self.LOW_PRICE)
|
| 54 |
+
|
| 55 |
+
def set_LOW_PRICE(self,LOW_PRICE):
|
| 56 |
+
return ModelInfo(ARRIVAL_RATE=self.ARRIVAL_RATE,
|
| 57 |
+
STARTING_INVENTORY=self.STARTING_INVENTORY,
|
| 58 |
+
CUSTOMER_1_PROP=self.CUSTOMER_1_PROP,
|
| 59 |
+
CUSTOMER_2_PROP=self.CUSTOMER_2_PROP,
|
| 60 |
+
HIGH_PRICE=self.HIGH_PRICE,
|
| 61 |
+
LOW_PRICE=LOW_PRICE)
|
| 62 |
+
|
| 63 |
+
def expected_revenue_in_period_1(model:ModelInfo):
|
| 64 |
+
mu = model.ARRIVAL_RATE
|
| 65 |
+
c1 = model.STARTING_INVENTORY
|
| 66 |
+
customer_1_prop = model.CUSTOMER_1_PROP
|
| 67 |
+
customer_2_prop = model.CUSTOMER_2_PROP
|
| 68 |
+
p1 = model.HIGH_PRICE
|
| 69 |
+
|
| 70 |
+
expected_sales = 0
|
| 71 |
+
|
| 72 |
+
for i in range(c1):
|
| 73 |
+
expected_sales += i * poisson.pmf(i,mu * customer_2_prop)
|
| 74 |
+
expected_sales += c1 * (1 - poisson.cdf(c1-1,mu * customer_2_prop))
|
| 75 |
+
|
| 76 |
+
return expected_sales * p1
|
| 77 |
+
|
| 78 |
+
def expected_revenue_in_period_2_given_price(c2,p2,residual_customer_1_period_1,residual_customer_2_period_1,model:ModelInfo):
|
| 79 |
+
mu = model.ARRIVAL_RATE
|
| 80 |
+
customer_1_prop = model.CUSTOMER_1_PROP
|
| 81 |
+
customer_2_prop = model.CUSTOMER_2_PROP
|
| 82 |
+
expected_sales = 0
|
| 83 |
+
if residual_customer_2_period_1 > 0:
|
| 84 |
+
# All are sold to customer 2 in period 1
|
| 85 |
+
return 0
|
| 86 |
+
|
| 87 |
+
# residual_customer_2_period_1 will always be 0, so not included here
|
| 88 |
+
total_residual = residual_customer_1_period_1
|
| 89 |
+
|
| 90 |
+
if p2 == model.LOW_PRICE:
|
| 91 |
+
|
| 92 |
+
# if there is already enough customer before more arrivals willing to buy, so sell to them
|
| 93 |
+
if total_residual >= c2:
|
| 94 |
+
# everyone will buy at price = 1
|
| 95 |
+
return c2 * p2
|
| 96 |
+
else:
|
| 97 |
+
# finding the expectation of min(# of customer + residual, c2)
|
| 98 |
+
# expressed as min(# of customer, c2 - residual) + residual
|
| 99 |
+
# makes sure c2 - residual is not negative
|
| 100 |
+
expected_sales += total_residual
|
| 101 |
+
for i in range(c2 - total_residual):
|
| 102 |
+
# the arrival of cust 1 from period 1 is fixed so mu nvr add the proportion of cust 1 arrivals
|
| 103 |
+
expected_sales += i * poisson.pmf(i,mu)
|
| 104 |
+
expected_sales += (c2 - total_residual) * (1 - poisson.cdf(c2 - total_residual - 1,mu))
|
| 105 |
+
|
| 106 |
+
return expected_sales * p2
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
elif p2 == model.HIGH_PRICE:
|
| 110 |
+
# only customer 2 buys
|
| 111 |
+
# residual customer 2 should be 0, since p1=2 and all customer 2 who arrived in period 1 will be buy
|
| 112 |
+
for i in range(c2):
|
| 113 |
+
expected_sales += i * poisson.pmf(i,mu * customer_2_prop)
|
| 114 |
+
expected_sales += c2 * (1 - poisson.cdf(c2 - 1, mu * customer_2_prop))
|
| 115 |
+
return expected_sales * p2
|
| 116 |
+
|
| 117 |
+
elif p2 > model.HIGH_PRICE or p2 <=0:
|
| 118 |
+
return 0
|
| 119 |
+
|
| 120 |
+
def expected_revenue_in_period_2(c2,residual_customer_1_period_1,residual_customer_2_period_1,c2_threshold,model:ModelInfo):
|
| 121 |
+
if c2 >= c2_threshold:
|
| 122 |
+
p2 = model.LOW_PRICE
|
| 123 |
+
else:
|
| 124 |
+
p2 = model.HIGH_PRICE
|
| 125 |
+
return expected_revenue_in_period_2_given_price(c2=c2,p2=p2,
|
| 126 |
+
residual_customer_1_period_1=residual_customer_1_period_1,
|
| 127 |
+
residual_customer_2_period_1=residual_customer_2_period_1,
|
| 128 |
+
model=model)
|
| 129 |
+
|
| 130 |
+
def calculate_probability(c2,residual_customer_1,residual_customer_2,model:ModelInfo):
|
| 131 |
+
# calculate the probablity having c2 inventory, residual_customer_1, residual_customer_2 in period 2
|
| 132 |
+
mu = model.ARRIVAL_RATE
|
| 133 |
+
customer_1_prop = model.CUSTOMER_1_PROP
|
| 134 |
+
customer_2_prop = model.CUSTOMER_2_PROP
|
| 135 |
+
c1 = model.STARTING_INVENTORY
|
| 136 |
+
|
| 137 |
+
customer_2_period_1 = c1 - c2 + residual_customer_2
|
| 138 |
+
if c2 >= 0 and residual_customer_2 == 0:
|
| 139 |
+
# case when customer 2 arrival in period 1 is less than or equal to inventory in period 1
|
| 140 |
+
prob_1 = poisson.pmf(customer_2_period_1,mu * customer_2_prop)
|
| 141 |
+
# all customer 1 arrival in period 1 becomes residual_customer_1 in period 2
|
| 142 |
+
prob_2 = poisson.pmf(residual_customer_1,mu * customer_1_prop)
|
| 143 |
+
#print(f'prob_1:{prob_1}|prob_2:{prob_2}')
|
| 144 |
+
return prob_1 * prob_2
|
| 145 |
+
elif c2 == 0 and residual_customer_2 > 0:
|
| 146 |
+
# case when customer 2 arrival in period 1 is more than inventory in period 1
|
| 147 |
+
prob_2 = poisson.pmf(residual_customer_1,mu * customer_1_prop)
|
| 148 |
+
# prob that total customer 2 in period 1 is c1 + residual_customer_2, > c1
|
| 149 |
+
prob_3 = poisson.pmf(c1+residual_customer_2,mu * customer_2_prop)
|
| 150 |
+
#print(f'prob_2:{prob_2}|prob_3:{prob_3}')
|
| 151 |
+
return prob_2 * prob_3
|
| 152 |
+
elif c2 > 0 and residual_customer_2 > 0:
|
| 153 |
+
# if there is inventory in period 2, there should not be any residual customer 2
|
| 154 |
+
return 0
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def calculate_expected_total_revenue(c2_threshold,model:ModelInfo):
|
| 159 |
+
total_expected_revenue_in_period_2 = 0
|
| 160 |
+
#inv = 0
|
| 161 |
+
#for RC1 in range(100):
|
| 162 |
+
# for RC2 in range(100):
|
| 163 |
+
# total_expected_revenue_in_period_2 += calculate_probability(inv,RC1,RC2) * expected_revenue_in_period_2(inv,RC1,RC2,c2_threshold=c2_threshold)
|
| 164 |
+
#print(total_expected_revenue_in_period_2)
|
| 165 |
+
|
| 166 |
+
RC2=0
|
| 167 |
+
for inv in range(1,model.STARTING_INVENTORY + 1):
|
| 168 |
+
# if there is no price change and remains high price, RC1 will have no effect, the expected revenue in period 2
|
| 169 |
+
# is solely dependent on the customer 2
|
| 170 |
+
customer_2_period_1 = model.STARTING_INVENTORY - inv
|
| 171 |
+
if inv < c2_threshold:
|
| 172 |
+
# prob of no of customer 2 in period * expected_rev_in_period_2 given c2=inv,RC1 is any value (since all same),RC2=0
|
| 173 |
+
total_expected_revenue_in_period_2 += poisson.pmf(customer_2_period_1,model.ARRIVAL_RATE * model.CUSTOMER_2_PROP) * expected_revenue_in_period_2(inv,0,0,c2_threshold,model=model)
|
| 174 |
+
elif inv >= c2_threshold:
|
| 175 |
+
#there is price change to LOW PRICE
|
| 176 |
+
for RC1 in range(inv):
|
| 177 |
+
# when residual is less than inv in period 2, there are still different values of prob and expected rev
|
| 178 |
+
#inv=2 | RC1 =0,1 | RC2=0
|
| 179 |
+
total_expected_revenue_in_period_2 += calculate_probability(inv,RC1,RC2,model=model) * expected_revenue_in_period_2(inv,RC1,RC2,c2_threshold=c2_threshold,model=model)
|
| 180 |
+
#when residual is greater than or qual to inv in period 2, the expected rev is just inv * LOW_PRICE
|
| 181 |
+
#inv =2 | RC1 >=2 | RC2=0 | expected rev in period 2 = inv * LOW_PIRCE = 2
|
| 182 |
+
#prob of the no of cutomer 2 in period 1, same for all cases of RC1, thus we can factor it out
|
| 183 |
+
prob_1 = poisson.pmf(customer_2_period_1,model.ARRIVAL_RATE * model.CUSTOMER_2_PROP)
|
| 184 |
+
# prob_1 * ( prob_2 + prob_2 + .....)
|
| 185 |
+
cum_prob_2 = 1-poisson.cdf(inv-1,model.ARRIVAL_RATE * model.CUSTOMER_1_PROP)
|
| 186 |
+
total_expected_revenue_in_period_2 += prob_1 * cum_prob_2 * expected_revenue_in_period_2(inv,inv,0,c2_threshold,model=model)
|
| 187 |
+
|
| 188 |
+
return total_expected_revenue_in_period_2 + expected_revenue_in_period_1(model=model)
|
| 189 |
+
|
| 190 |
+
def calculate_expected_total_revenue_given_low_low(model:ModelInfo):
|
| 191 |
+
mu = 2*model.ARRIVAL_RATE
|
| 192 |
+
c1 = model.STARTING_INVENTORY
|
| 193 |
+
p = model.LOW_PRICE
|
| 194 |
+
|
| 195 |
+
expected_sales = 0
|
| 196 |
+
|
| 197 |
+
for i in range(c1):
|
| 198 |
+
expected_sales += i * poisson.pmf(i,mu)
|
| 199 |
+
expected_sales += c1 * (1 - poisson.cdf(c1-1,mu))
|
| 200 |
+
|
| 201 |
+
return expected_sales * p
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def calculate_expected_total_revenue_given_price(p2,model:ModelInfo):
|
| 206 |
+
total_expected_revenue_in_period_2 = 0
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
RC2=0
|
| 210 |
+
for inv in range(1,model.STARTING_INVENTORY+1):
|
| 211 |
+
customer_2_period_1 = model.STARTING_INVENTORY - inv
|
| 212 |
+
for RC1 in range(inv):
|
| 213 |
+
# RC1 =0,1
|
| 214 |
+
total_expected_revenue_in_period_2 += calculate_probability(inv,RC1,RC2,model=model) * expected_revenue_in_period_2_given_price(inv,p2,RC1,RC2,model=model)
|
| 215 |
+
#RC1 =2,3,...
|
| 216 |
+
prob_1 = poisson.pmf(customer_2_period_1,model.ARRIVAL_RATE * model.CUSTOMER_2_PROP)
|
| 217 |
+
# prob_1 * ( prob_2 + prob_2 + .....)
|
| 218 |
+
cum_prob_2 = 1-poisson.cdf(inv-1,model.ARRIVAL_RATE * model.CUSTOMER_1_PROP)
|
| 219 |
+
total_expected_revenue_in_period_2 += prob_1 * cum_prob_2 * expected_revenue_in_period_2_given_price(inv,p2,inv,0,model=model)
|
| 220 |
+
|
| 221 |
+
return total_expected_revenue_in_period_2 + expected_revenue_in_period_1(model=model)
|
| 222 |
+
|
| 223 |
+
def get_best_dynamic_threshold(model:ModelInfo):
|
| 224 |
+
best_rev = 0
|
| 225 |
+
for inv in range(model.STARTING_INVENTORY+1):
|
| 226 |
+
curr_rev = calculate_expected_total_revenue(c2_threshold=inv,model=model)
|
| 227 |
+
if curr_rev >= best_rev:
|
| 228 |
+
best_rev = curr_rev
|
| 229 |
+
best_inv = inv
|
| 230 |
+
return (best_inv,best_rev)
|
| 231 |
+
|
| 232 |
+
def get_static_pricing(model:ModelInfo):
|
| 233 |
+
return (calculate_expected_total_revenue_given_low_low(model=model),calculate_expected_total_revenue_given_price(model.HIGH_PRICE,model=model),calculate_expected_total_revenue_given_price(model.LOW_PRICE,model=model))
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def gap_between_dynamic_and_static(model:ModelInfo):
|
| 237 |
+
tmp =max(get_static_pricing(model=model))
|
| 238 |
+
return calculate_expected_total_revenue(get_best_dynamic_threshold(model=model)[0],model=model)-tmp
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
def High_Low_Gap(high_low,model:ModelInfo):
|
| 242 |
+
res = gap_between_dynamic_and_static(model=model.set_HIGH_PRICE(HIGH_PRICE=high_low[0]).set_LOW_PRICE(high_low[1]))
|
| 243 |
+
return res
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def Starting_Inv_Arrival_Gap(starting_inv_arrival,model:ModelInfo):
|
| 247 |
+
res = gap_between_dynamic_and_static(model=model.set_STARTING_INVENTORY(starting_inv_arrival[0]).set_ARRIVAL_RATE(starting_inv_arrival[1]))
|
| 248 |
+
return res
|
| 249 |
+
|