Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- README.md +13 -0
- src/routes/responses.ts +248 -160
- src/schemas.ts +1 -1
README.md
CHANGED
|
@@ -11,6 +11,19 @@ app_port: 3000
|
|
| 11 |
---
|
| 12 |
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# responses.js
|
| 15 |
|
| 16 |
A lightweight Express.js server that implements OpenAI's Responses API, built on top of Chat Completions and powered by Hugging Face Inference Providers.
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
|
| 14 |
+
---
|
| 15 |
+
title: Responses.js
|
| 16 |
+
emoji: 😻
|
| 17 |
+
colorFrom: red
|
| 18 |
+
colorTo: red
|
| 19 |
+
sdk: docker
|
| 20 |
+
pinned: false
|
| 21 |
+
license: mit
|
| 22 |
+
short_description: Check out https://github.com/huggingface/responses.js
|
| 23 |
+
app_port: 3000
|
| 24 |
+
---
|
| 25 |
+
|
| 26 |
+
|
| 27 |
# responses.js
|
| 28 |
|
| 29 |
A lightweight Express.js server that implements OpenAI's Responses API, built on top of Chat Completions and powered by Hugging Face Inference Providers.
|
src/routes/responses.ts
CHANGED
|
@@ -17,7 +17,10 @@ import type {
|
|
| 17 |
ResponseFunctionToolCall,
|
| 18 |
ResponseOutputItem,
|
| 19 |
} from "openai/resources/responses/responses";
|
| 20 |
-
import type {
|
|
|
|
|
|
|
|
|
|
| 21 |
import { callMcpTool, connectMcpServer } from "../mcp.js";
|
| 22 |
|
| 23 |
class StreamingError extends Error {
|
|
@@ -136,6 +139,7 @@ async function* runCreateResponseStream(
|
|
| 136 |
}
|
| 137 |
|
| 138 |
// Response completed event
|
|
|
|
| 139 |
yield {
|
| 140 |
type: "response.completed",
|
| 141 |
response: responseObject as Response,
|
|
@@ -226,34 +230,7 @@ async function* innerRunStream(
|
|
| 226 |
tools = undefined;
|
| 227 |
}
|
| 228 |
|
| 229 |
-
//
|
| 230 |
-
if (Array.isArray(req.body.input)) {
|
| 231 |
-
for (const item of req.body.input) {
|
| 232 |
-
// Note: currently supporting only 1 mcp_approval_response per request
|
| 233 |
-
let shouldStop = false;
|
| 234 |
-
if (item.type === "mcp_approval_response" && item.approve) {
|
| 235 |
-
const approvalRequest = req.body.input.find(
|
| 236 |
-
(i) => i.type === "mcp_approval_request" && i.id === item.approval_request_id
|
| 237 |
-
) as McpApprovalRequestParams | undefined;
|
| 238 |
-
for await (const event of callApprovedMCPToolStream(
|
| 239 |
-
item.approval_request_id,
|
| 240 |
-
approvalRequest,
|
| 241 |
-
mcpToolsMapping,
|
| 242 |
-
responseObject
|
| 243 |
-
)) {
|
| 244 |
-
yield event;
|
| 245 |
-
}
|
| 246 |
-
shouldStop = true;
|
| 247 |
-
}
|
| 248 |
-
if (shouldStop) {
|
| 249 |
-
// stop if at least one approval request is processed
|
| 250 |
-
break;
|
| 251 |
-
}
|
| 252 |
-
}
|
| 253 |
-
}
|
| 254 |
-
|
| 255 |
-
// At this point, we have all tools and we know we want to call the LLM
|
| 256 |
-
// Let's prepare the payload and make the call!
|
| 257 |
|
| 258 |
// Resolve model and provider
|
| 259 |
const model = req.body.model.includes("@") ? req.body.model.split("@")[1] : req.body.model;
|
|
@@ -356,9 +333,9 @@ async function* innerRunStream(
|
|
| 356 |
// Prepare payload for the LLM
|
| 357 |
const payload: ChatCompletionInput = {
|
| 358 |
// main params
|
| 359 |
-
model
|
| 360 |
-
provider
|
| 361 |
-
messages
|
| 362 |
stream: req.body.stream,
|
| 363 |
// options
|
| 364 |
max_tokens: req.body.max_output_tokens === null ? undefined : req.body.max_output_tokens,
|
|
@@ -392,21 +369,72 @@ async function* innerRunStream(
|
|
| 392 |
top_p: req.body.top_p,
|
| 393 |
};
|
| 394 |
|
| 395 |
-
//
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
}
|
| 405 |
|
| 406 |
async function* listMcpToolsStream(
|
| 407 |
tool: McpServerParams,
|
| 408 |
responseObject: IncompleteResponse
|
| 409 |
): AsyncGenerator<ResponseStreamEvent> {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 410 |
yield {
|
| 411 |
type: "response.mcp_list_tools.in_progress",
|
| 412 |
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
|
@@ -419,17 +447,18 @@ async function* listMcpToolsStream(
|
|
| 419 |
type: "response.mcp_list_tools.completed",
|
| 420 |
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 421 |
};
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
|
|
|
| 433 |
} catch (error) {
|
| 434 |
const errorMessage = `Failed to list tools from MCP server '${tool.server_label}': ${error instanceof Error ? error.message : "Unknown error"}`;
|
| 435 |
console.error(errorMessage);
|
|
@@ -444,27 +473,31 @@ async function* listMcpToolsStream(
|
|
| 444 |
/*
|
| 445 |
* Call LLM and stream the response.
|
| 446 |
*/
|
| 447 |
-
async function*
|
| 448 |
apiKey: string | undefined,
|
| 449 |
payload: ChatCompletionInput,
|
| 450 |
responseObject: IncompleteResponse,
|
| 451 |
mcpToolsMapping: Record<string, McpServerParams>
|
| 452 |
): AsyncGenerator<ResponseStreamEvent> {
|
| 453 |
const stream = new InferenceClient(apiKey).chatCompletionStream(payload);
|
|
|
|
|
|
|
|
|
|
| 454 |
|
| 455 |
for await (const chunk of stream) {
|
| 456 |
if (chunk.usage) {
|
| 457 |
// Overwrite usage with the latest chunk's usage
|
| 458 |
responseObject.usage = {
|
| 459 |
-
input_tokens: chunk.usage.prompt_tokens,
|
| 460 |
input_tokens_details: { cached_tokens: 0 },
|
| 461 |
-
output_tokens: chunk.usage.completion_tokens,
|
| 462 |
output_tokens_details: { reasoning_tokens: 0 },
|
| 463 |
-
total_tokens: chunk.usage.total_tokens,
|
| 464 |
};
|
| 465 |
}
|
| 466 |
|
| 467 |
const delta = chunk.choices[0].delta;
|
|
|
|
| 468 |
if (delta.content) {
|
| 469 |
let currentOutputItem = responseObject.output.at(-1);
|
| 470 |
|
|
@@ -528,32 +561,45 @@ async function* callLLMStream(
|
|
| 528 |
};
|
| 529 |
} else if (delta.tool_calls && delta.tool_calls.length > 0) {
|
| 530 |
if (delta.tool_calls.length > 1) {
|
| 531 |
-
|
| 532 |
}
|
| 533 |
|
| 534 |
let currentOutputItem = responseObject.output.at(-1);
|
| 535 |
-
if (
|
| 536 |
-
|
| 537 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 538 |
}
|
| 539 |
|
| 540 |
-
const newOutputObject: ResponseOutputItem.McpCall | ResponseFunctionToolCall =
|
| 541 |
-
delta.tool_calls[0].function.name in mcpToolsMapping
|
| 542 |
-
? {
|
| 543 |
-
type: "mcp_call",
|
| 544 |
-
id: generateUniqueId("mcp_call"),
|
| 545 |
-
name: delta.tool_calls[0].function.name,
|
| 546 |
-
server_label: mcpToolsMapping[delta.tool_calls[0].function.name].server_label,
|
| 547 |
-
arguments: "",
|
| 548 |
-
}
|
| 549 |
-
: {
|
| 550 |
-
type: "function_call",
|
| 551 |
-
id: generateUniqueId("fc"),
|
| 552 |
-
call_id: delta.tool_calls[0].id,
|
| 553 |
-
name: delta.tool_calls[0].function.name,
|
| 554 |
-
arguments: "",
|
| 555 |
-
};
|
| 556 |
-
|
| 557 |
// Response output item added event
|
| 558 |
responseObject.output.push(newOutputObject);
|
| 559 |
yield {
|
|
@@ -562,21 +608,36 @@ async function* callLLMStream(
|
|
| 562 |
item: newOutputObject,
|
| 563 |
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 564 |
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 565 |
}
|
| 566 |
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 580 |
}
|
| 581 |
}
|
| 582 |
|
|
@@ -632,12 +693,65 @@ async function* callLLMStream(
|
|
| 632 |
};
|
| 633 |
} else if (lastOutputItem?.type === "mcp_call") {
|
| 634 |
yield {
|
| 635 |
-
type: "response.mcp_call.arguments_done",
|
| 636 |
item_id: lastOutputItem.id as string,
|
| 637 |
output_index: responseObject.output.length - 1,
|
| 638 |
arguments: lastOutputItem.arguments,
|
| 639 |
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 640 |
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 641 |
yield {
|
| 642 |
type: "response.output_item.done",
|
| 643 |
output_index: responseObject.output.length - 1,
|
|
@@ -657,9 +771,11 @@ async function* callLLMStream(
|
|
| 657 |
*/
|
| 658 |
async function* callApprovedMCPToolStream(
|
| 659 |
approval_request_id: string,
|
|
|
|
| 660 |
approvalRequest: McpApprovalRequestParams | undefined,
|
| 661 |
mcpToolsMapping: Record<string, McpServerParams>,
|
| 662 |
-
responseObject: IncompleteResponse
|
|
|
|
| 663 |
): AsyncGenerator<ResponseStreamEvent> {
|
| 664 |
if (!approvalRequest) {
|
| 665 |
throw new Error(`MCP approval request '${approval_request_id}' not found`);
|
|
@@ -667,7 +783,7 @@ async function* callApprovedMCPToolStream(
|
|
| 667 |
|
| 668 |
const outputObject: ResponseOutputItem.McpCall = {
|
| 669 |
type: "mcp_call",
|
| 670 |
-
id:
|
| 671 |
name: approvalRequest.name,
|
| 672 |
server_label: approvalRequest.server_label,
|
| 673 |
arguments: approvalRequest.arguments,
|
|
@@ -698,83 +814,55 @@ async function* callApprovedMCPToolStream(
|
|
| 698 |
type: "response.mcp_call.failed",
|
| 699 |
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 700 |
};
|
| 701 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 702 |
}
|
| 703 |
|
| 704 |
-
outputObject.output = toolResult.output;
|
| 705 |
-
yield {
|
| 706 |
-
type: "response.mcp_call.completed",
|
| 707 |
-
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 708 |
-
};
|
| 709 |
yield {
|
| 710 |
type: "response.output_item.done",
|
| 711 |
output_index: responseObject.output.length - 1,
|
| 712 |
item: outputObject,
|
| 713 |
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 714 |
};
|
| 715 |
-
}
|
| 716 |
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
if (approvalRequired) {
|
| 739 |
-
const approvalRequest: ResponseOutputItem.McpApprovalRequest = {
|
| 740 |
-
type: "mcp_approval_request",
|
| 741 |
-
id: generateUniqueId("mcp_approval_request"),
|
| 742 |
-
name: toolCall.name,
|
| 743 |
-
server_label: toolParams.server_label,
|
| 744 |
-
arguments: toolCall.arguments,
|
| 745 |
-
};
|
| 746 |
-
responseObject.output.push(approvalRequest);
|
| 747 |
-
yield {
|
| 748 |
-
type: "response.output_item.added",
|
| 749 |
-
output_index: responseObject.output.length,
|
| 750 |
-
item: approvalRequest,
|
| 751 |
-
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 752 |
-
};
|
| 753 |
-
} else {
|
| 754 |
-
responseObject.output.push;
|
| 755 |
-
yield {
|
| 756 |
-
type: "response.mcp_call.in_progress",
|
| 757 |
-
item_id: toolCall.id,
|
| 758 |
-
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 759 |
-
output_index,
|
| 760 |
-
};
|
| 761 |
-
const toolResult = await callMcpTool(toolParams, toolCall.name, toolCall.arguments);
|
| 762 |
-
if (toolResult.error) {
|
| 763 |
-
toolCall.error = toolResult.error;
|
| 764 |
-
yield {
|
| 765 |
-
type: "response.mcp_call.failed",
|
| 766 |
-
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 767 |
-
};
|
| 768 |
-
throw new Error(toolCall.error);
|
| 769 |
-
} else {
|
| 770 |
-
toolCall.output = toolResult.output;
|
| 771 |
-
yield {
|
| 772 |
-
type: "response.mcp_call.completed",
|
| 773 |
-
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 774 |
-
};
|
| 775 |
-
}
|
| 776 |
-
}
|
| 777 |
-
}
|
| 778 |
}
|
| 779 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 780 |
}
|
|
|
|
| 17 |
ResponseFunctionToolCall,
|
| 18 |
ResponseOutputItem,
|
| 19 |
} from "openai/resources/responses/responses";
|
| 20 |
+
import type {
|
| 21 |
+
ChatCompletionInputFunctionDefinition,
|
| 22 |
+
ChatCompletionInputTool,
|
| 23 |
+
} from "@huggingface/tasks/dist/commonjs/tasks/chat-completion/inference.js";
|
| 24 |
import { callMcpTool, connectMcpServer } from "../mcp.js";
|
| 25 |
|
| 26 |
class StreamingError extends Error {
|
|
|
|
| 139 |
}
|
| 140 |
|
| 141 |
// Response completed event
|
| 142 |
+
responseObject.status = "completed";
|
| 143 |
yield {
|
| 144 |
type: "response.completed",
|
| 145 |
response: responseObject as Response,
|
|
|
|
| 230 |
tools = undefined;
|
| 231 |
}
|
| 232 |
|
| 233 |
+
// Prepare payload for the LLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
// Resolve model and provider
|
| 236 |
const model = req.body.model.includes("@") ? req.body.model.split("@")[1] : req.body.model;
|
|
|
|
| 333 |
// Prepare payload for the LLM
|
| 334 |
const payload: ChatCompletionInput = {
|
| 335 |
// main params
|
| 336 |
+
model,
|
| 337 |
+
provider,
|
| 338 |
+
messages,
|
| 339 |
stream: req.body.stream,
|
| 340 |
// options
|
| 341 |
max_tokens: req.body.max_output_tokens === null ? undefined : req.body.max_output_tokens,
|
|
|
|
| 369 |
top_p: req.body.top_p,
|
| 370 |
};
|
| 371 |
|
| 372 |
+
// If MCP approval requests => execute them and return (no LLM call)
|
| 373 |
+
if (Array.isArray(req.body.input)) {
|
| 374 |
+
for (const item of req.body.input) {
|
| 375 |
+
if (item.type === "mcp_approval_response" && item.approve) {
|
| 376 |
+
const approvalRequest = req.body.input.find(
|
| 377 |
+
(i) => i.type === "mcp_approval_request" && i.id === item.approval_request_id
|
| 378 |
+
) as McpApprovalRequestParams | undefined;
|
| 379 |
+
const mcpCallId = "mcp_" + item.approval_request_id.split("_")[1];
|
| 380 |
+
const mcpCall = req.body.input.find((i) => i.type === "mcp_call" && i.id === mcpCallId);
|
| 381 |
+
if (mcpCall) {
|
| 382 |
+
// MCP call for that approval request has already been made, so we can skip it
|
| 383 |
+
continue;
|
| 384 |
+
}
|
| 385 |
|
| 386 |
+
for await (const event of callApprovedMCPToolStream(
|
| 387 |
+
item.approval_request_id,
|
| 388 |
+
mcpCallId,
|
| 389 |
+
approvalRequest,
|
| 390 |
+
mcpToolsMapping,
|
| 391 |
+
responseObject,
|
| 392 |
+
payload
|
| 393 |
+
)) {
|
| 394 |
+
yield event;
|
| 395 |
+
}
|
| 396 |
+
}
|
| 397 |
+
}
|
| 398 |
}
|
| 399 |
+
|
| 400 |
+
// Call the LLM until no new message is added to the payload.
|
| 401 |
+
// New messages can be added if the LLM calls an MCP tool that is automatically run.
|
| 402 |
+
// A maximum number of iterations is set to avoid infinite loops.
|
| 403 |
+
let previousMessageCount: number;
|
| 404 |
+
let currentMessageCount = payload.messages.length;
|
| 405 |
+
const MAX_ITERATIONS = 5; // hard-coded
|
| 406 |
+
let iterations = 0;
|
| 407 |
+
do {
|
| 408 |
+
previousMessageCount = currentMessageCount;
|
| 409 |
+
|
| 410 |
+
for await (const event of handleOneTurnStream(apiKey, payload, responseObject, mcpToolsMapping)) {
|
| 411 |
+
yield event;
|
| 412 |
+
}
|
| 413 |
+
|
| 414 |
+
currentMessageCount = payload.messages.length;
|
| 415 |
+
iterations++;
|
| 416 |
+
} while (currentMessageCount > previousMessageCount && iterations < MAX_ITERATIONS);
|
| 417 |
}
|
| 418 |
|
| 419 |
async function* listMcpToolsStream(
|
| 420 |
tool: McpServerParams,
|
| 421 |
responseObject: IncompleteResponse
|
| 422 |
): AsyncGenerator<ResponseStreamEvent> {
|
| 423 |
+
const outputObject: ResponseOutputItem.McpListTools = {
|
| 424 |
+
id: generateUniqueId("mcpl"),
|
| 425 |
+
type: "mcp_list_tools",
|
| 426 |
+
server_label: tool.server_label,
|
| 427 |
+
tools: [],
|
| 428 |
+
};
|
| 429 |
+
responseObject.output.push(outputObject);
|
| 430 |
+
|
| 431 |
+
yield {
|
| 432 |
+
type: "response.output_item.added",
|
| 433 |
+
output_index: responseObject.output.length - 1,
|
| 434 |
+
item: outputObject,
|
| 435 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 436 |
+
};
|
| 437 |
+
|
| 438 |
yield {
|
| 439 |
type: "response.mcp_list_tools.in_progress",
|
| 440 |
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
|
|
|
| 447 |
type: "response.mcp_list_tools.completed",
|
| 448 |
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 449 |
};
|
| 450 |
+
outputObject.tools = mcpTools.tools.map((mcpTool) => ({
|
| 451 |
+
input_schema: mcpTool.inputSchema,
|
| 452 |
+
name: mcpTool.name,
|
| 453 |
+
annotations: mcpTool.annotations,
|
| 454 |
+
description: mcpTool.description,
|
| 455 |
+
}));
|
| 456 |
+
yield {
|
| 457 |
+
type: "response.output_item.done",
|
| 458 |
+
output_index: responseObject.output.length - 1,
|
| 459 |
+
item: outputObject,
|
| 460 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 461 |
+
};
|
| 462 |
} catch (error) {
|
| 463 |
const errorMessage = `Failed to list tools from MCP server '${tool.server_label}': ${error instanceof Error ? error.message : "Unknown error"}`;
|
| 464 |
console.error(errorMessage);
|
|
|
|
| 473 |
/*
|
| 474 |
* Call LLM and stream the response.
|
| 475 |
*/
|
| 476 |
+
async function* handleOneTurnStream(
|
| 477 |
apiKey: string | undefined,
|
| 478 |
payload: ChatCompletionInput,
|
| 479 |
responseObject: IncompleteResponse,
|
| 480 |
mcpToolsMapping: Record<string, McpServerParams>
|
| 481 |
): AsyncGenerator<ResponseStreamEvent> {
|
| 482 |
const stream = new InferenceClient(apiKey).chatCompletionStream(payload);
|
| 483 |
+
let previousInputTokens = responseObject.usage?.input_tokens ?? 0;
|
| 484 |
+
let previousOutputTokens = responseObject.usage?.output_tokens ?? 0;
|
| 485 |
+
let previousTotalTokens = responseObject.usage?.total_tokens ?? 0;
|
| 486 |
|
| 487 |
for await (const chunk of stream) {
|
| 488 |
if (chunk.usage) {
|
| 489 |
// Overwrite usage with the latest chunk's usage
|
| 490 |
responseObject.usage = {
|
| 491 |
+
input_tokens: previousInputTokens + chunk.usage.prompt_tokens,
|
| 492 |
input_tokens_details: { cached_tokens: 0 },
|
| 493 |
+
output_tokens: previousOutputTokens + chunk.usage.completion_tokens,
|
| 494 |
output_tokens_details: { reasoning_tokens: 0 },
|
| 495 |
+
total_tokens: previousTotalTokens + chunk.usage.total_tokens,
|
| 496 |
};
|
| 497 |
}
|
| 498 |
|
| 499 |
const delta = chunk.choices[0].delta;
|
| 500 |
+
|
| 501 |
if (delta.content) {
|
| 502 |
let currentOutputItem = responseObject.output.at(-1);
|
| 503 |
|
|
|
|
| 561 |
};
|
| 562 |
} else if (delta.tool_calls && delta.tool_calls.length > 0) {
|
| 563 |
if (delta.tool_calls.length > 1) {
|
| 564 |
+
console.log("Multiple tool calls are not supported. Only the first one will be processed.");
|
| 565 |
}
|
| 566 |
|
| 567 |
let currentOutputItem = responseObject.output.at(-1);
|
| 568 |
+
if (delta.tool_calls[0].function.name) {
|
| 569 |
+
const functionName = delta.tool_calls[0].function.name;
|
| 570 |
+
// Tool call with a name => new tool call
|
| 571 |
+
let newOutputObject:
|
| 572 |
+
| ResponseOutputItem.McpCall
|
| 573 |
+
| ResponseFunctionToolCall
|
| 574 |
+
| ResponseOutputItem.McpApprovalRequest;
|
| 575 |
+
if (functionName in mcpToolsMapping) {
|
| 576 |
+
if (requiresApproval(functionName, mcpToolsMapping)) {
|
| 577 |
+
newOutputObject = {
|
| 578 |
+
id: generateUniqueId("mcpr"),
|
| 579 |
+
type: "mcp_approval_request",
|
| 580 |
+
name: functionName,
|
| 581 |
+
server_label: mcpToolsMapping[functionName].server_label,
|
| 582 |
+
arguments: "",
|
| 583 |
+
};
|
| 584 |
+
} else {
|
| 585 |
+
newOutputObject = {
|
| 586 |
+
type: "mcp_call",
|
| 587 |
+
id: generateUniqueId("mcp"),
|
| 588 |
+
name: functionName,
|
| 589 |
+
server_label: mcpToolsMapping[functionName].server_label,
|
| 590 |
+
arguments: "",
|
| 591 |
+
};
|
| 592 |
+
}
|
| 593 |
+
} else {
|
| 594 |
+
newOutputObject = {
|
| 595 |
+
type: "function_call",
|
| 596 |
+
id: generateUniqueId("fc"),
|
| 597 |
+
call_id: delta.tool_calls[0].id,
|
| 598 |
+
name: functionName,
|
| 599 |
+
arguments: "",
|
| 600 |
+
};
|
| 601 |
}
|
| 602 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 603 |
// Response output item added event
|
| 604 |
responseObject.output.push(newOutputObject);
|
| 605 |
yield {
|
|
|
|
| 608 |
item: newOutputObject,
|
| 609 |
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 610 |
};
|
| 611 |
+
if (newOutputObject.type === "mcp_call") {
|
| 612 |
+
yield {
|
| 613 |
+
type: "response.mcp_call.in_progress",
|
| 614 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 615 |
+
item_id: newOutputObject.id,
|
| 616 |
+
output_index: responseObject.output.length - 1,
|
| 617 |
+
};
|
| 618 |
+
}
|
| 619 |
}
|
| 620 |
|
| 621 |
+
if (delta.tool_calls[0].function.arguments) {
|
| 622 |
+
// Current item is necessarily a tool call
|
| 623 |
+
currentOutputItem = responseObject.output.at(-1) as
|
| 624 |
+
| ResponseOutputItem.McpCall
|
| 625 |
+
| ResponseFunctionToolCall
|
| 626 |
+
| ResponseOutputItem.McpApprovalRequest;
|
| 627 |
+
currentOutputItem.arguments += delta.tool_calls[0].function.arguments;
|
| 628 |
+
if (currentOutputItem.type === "mcp_call" || currentOutputItem.type === "function_call") {
|
| 629 |
+
yield {
|
| 630 |
+
type:
|
| 631 |
+
currentOutputItem.type === "mcp_call"
|
| 632 |
+
? ("response.mcp_call_arguments.delta" as "response.mcp_call.arguments_delta") // bug workaround (see https://github.com/openai/openai-node/issues/1562)
|
| 633 |
+
: "response.function_call_arguments.delta",
|
| 634 |
+
item_id: currentOutputItem.id as string,
|
| 635 |
+
output_index: responseObject.output.length - 1,
|
| 636 |
+
delta: delta.tool_calls[0].function.arguments,
|
| 637 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 638 |
+
};
|
| 639 |
+
}
|
| 640 |
+
}
|
| 641 |
}
|
| 642 |
}
|
| 643 |
|
|
|
|
| 693 |
};
|
| 694 |
} else if (lastOutputItem?.type === "mcp_call") {
|
| 695 |
yield {
|
| 696 |
+
type: "response.mcp_call_arguments.done" as "response.mcp_call.arguments_done", // bug workaround (see https://github.com/openai/openai-node/issues/1562)
|
| 697 |
item_id: lastOutputItem.id as string,
|
| 698 |
output_index: responseObject.output.length - 1,
|
| 699 |
arguments: lastOutputItem.arguments,
|
| 700 |
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 701 |
};
|
| 702 |
+
|
| 703 |
+
// Call MCP tool
|
| 704 |
+
const toolParams = mcpToolsMapping[lastOutputItem.name];
|
| 705 |
+
const toolResult = await callMcpTool(toolParams, lastOutputItem.name, lastOutputItem.arguments);
|
| 706 |
+
if (toolResult.error) {
|
| 707 |
+
lastOutputItem.error = toolResult.error;
|
| 708 |
+
yield {
|
| 709 |
+
type: "response.mcp_call.failed",
|
| 710 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 711 |
+
};
|
| 712 |
+
} else {
|
| 713 |
+
lastOutputItem.output = toolResult.output;
|
| 714 |
+
yield {
|
| 715 |
+
type: "response.mcp_call.completed",
|
| 716 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 717 |
+
};
|
| 718 |
+
}
|
| 719 |
+
|
| 720 |
+
yield {
|
| 721 |
+
type: "response.output_item.done",
|
| 722 |
+
output_index: responseObject.output.length - 1,
|
| 723 |
+
item: lastOutputItem,
|
| 724 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 725 |
+
};
|
| 726 |
+
|
| 727 |
+
// Updating the payload for next LLM call
|
| 728 |
+
payload.messages.push(
|
| 729 |
+
{
|
| 730 |
+
role: "assistant",
|
| 731 |
+
tool_calls: [
|
| 732 |
+
{
|
| 733 |
+
id: lastOutputItem.id,
|
| 734 |
+
type: "function",
|
| 735 |
+
function: {
|
| 736 |
+
name: lastOutputItem.name,
|
| 737 |
+
arguments: lastOutputItem.arguments,
|
| 738 |
+
// Hacky: type is not correct in inference.js. Will fix it but in the meantime we need to cast it.
|
| 739 |
+
// TODO: fix it in the inference.js package. Should be "arguments" and not "parameters".
|
| 740 |
+
} as unknown as ChatCompletionInputFunctionDefinition,
|
| 741 |
+
},
|
| 742 |
+
],
|
| 743 |
+
},
|
| 744 |
+
{
|
| 745 |
+
role: "tool",
|
| 746 |
+
tool_call_id: lastOutputItem.id,
|
| 747 |
+
content: lastOutputItem.output
|
| 748 |
+
? lastOutputItem.output
|
| 749 |
+
: lastOutputItem.error
|
| 750 |
+
? `Error: ${lastOutputItem.error}`
|
| 751 |
+
: "",
|
| 752 |
+
}
|
| 753 |
+
);
|
| 754 |
+
} else if (lastOutputItem?.type === "mcp_approval_request") {
|
| 755 |
yield {
|
| 756 |
type: "response.output_item.done",
|
| 757 |
output_index: responseObject.output.length - 1,
|
|
|
|
| 771 |
*/
|
| 772 |
async function* callApprovedMCPToolStream(
|
| 773 |
approval_request_id: string,
|
| 774 |
+
mcpCallId: string,
|
| 775 |
approvalRequest: McpApprovalRequestParams | undefined,
|
| 776 |
mcpToolsMapping: Record<string, McpServerParams>,
|
| 777 |
+
responseObject: IncompleteResponse,
|
| 778 |
+
payload: ChatCompletionInput
|
| 779 |
): AsyncGenerator<ResponseStreamEvent> {
|
| 780 |
if (!approvalRequest) {
|
| 781 |
throw new Error(`MCP approval request '${approval_request_id}' not found`);
|
|
|
|
| 783 |
|
| 784 |
const outputObject: ResponseOutputItem.McpCall = {
|
| 785 |
type: "mcp_call",
|
| 786 |
+
id: mcpCallId,
|
| 787 |
name: approvalRequest.name,
|
| 788 |
server_label: approvalRequest.server_label,
|
| 789 |
arguments: approvalRequest.arguments,
|
|
|
|
| 814 |
type: "response.mcp_call.failed",
|
| 815 |
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 816 |
};
|
| 817 |
+
} else {
|
| 818 |
+
outputObject.output = toolResult.output;
|
| 819 |
+
yield {
|
| 820 |
+
type: "response.mcp_call.completed",
|
| 821 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 822 |
+
};
|
| 823 |
}
|
| 824 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 825 |
yield {
|
| 826 |
type: "response.output_item.done",
|
| 827 |
output_index: responseObject.output.length - 1,
|
| 828 |
item: outputObject,
|
| 829 |
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
| 830 |
};
|
|
|
|
| 831 |
|
| 832 |
+
// Updating the payload for next LLM call
|
| 833 |
+
payload.messages.push(
|
| 834 |
+
{
|
| 835 |
+
role: "assistant",
|
| 836 |
+
tool_calls: [
|
| 837 |
+
{
|
| 838 |
+
id: outputObject.id,
|
| 839 |
+
type: "function",
|
| 840 |
+
function: {
|
| 841 |
+
name: outputObject.name,
|
| 842 |
+
arguments: outputObject.arguments,
|
| 843 |
+
// Hacky: type is not correct in inference.js. Will fix it but in the meantime we need to cast it.
|
| 844 |
+
// TODO: fix it in the inference.js package. Should be "arguments" and not "parameters".
|
| 845 |
+
} as unknown as ChatCompletionInputFunctionDefinition,
|
| 846 |
+
},
|
| 847 |
+
],
|
| 848 |
+
},
|
| 849 |
+
{
|
| 850 |
+
role: "tool",
|
| 851 |
+
tool_call_id: outputObject.id,
|
| 852 |
+
content: outputObject.output ? outputObject.output : outputObject.error ? `Error: ${outputObject.error}` : "",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 853 |
}
|
| 854 |
+
);
|
| 855 |
+
}
|
| 856 |
+
|
| 857 |
+
function requiresApproval(toolName: string, mcpToolsMapping: Record<string, McpServerParams>): boolean {
|
| 858 |
+
const toolParams = mcpToolsMapping[toolName];
|
| 859 |
+
return toolParams.require_approval === "always"
|
| 860 |
+
? true
|
| 861 |
+
: toolParams.require_approval === "never"
|
| 862 |
+
? false
|
| 863 |
+
: toolParams.require_approval.always?.tool_names?.includes(toolName)
|
| 864 |
+
? true
|
| 865 |
+
: toolParams.require_approval.never?.tool_names?.includes(toolName)
|
| 866 |
+
? false
|
| 867 |
+
: true; // behavior is undefined in specs, let's default to true
|
| 868 |
}
|
src/schemas.ts
CHANGED
|
@@ -125,7 +125,7 @@ export const createResponseParamsSchema = z.object({
|
|
| 125 |
output: z.string(),
|
| 126 |
type: z.literal("function_call_output"),
|
| 127 |
id: z.string().optional(),
|
| 128 |
-
status: z.enum(["in_progress", "completed", "incomplete"]),
|
| 129 |
}),
|
| 130 |
z.object({
|
| 131 |
type: z.literal("mcp_list_tools"),
|
|
|
|
| 125 |
output: z.string(),
|
| 126 |
type: z.literal("function_call_output"),
|
| 127 |
id: z.string().optional(),
|
| 128 |
+
status: z.enum(["in_progress", "completed", "incomplete"]).optional(),
|
| 129 |
}),
|
| 130 |
z.object({
|
| 131 |
type: z.literal("mcp_list_tools"),
|