Spaces:
Sleeping
Sleeping
First draft
Browse files- app.py +130 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import shutil
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from typing import Iterable, List
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import kagglehub
|
| 8 |
+
from gradio_logsview.logsview import Log, LogsView, LogsViewRunner
|
| 9 |
+
from huggingface_hub import HfApi
|
| 10 |
+
|
| 11 |
+
KAGGLE_JSON = os.environ.get("KAGGLE_JSON")
|
| 12 |
+
KAGGLE_JSON_PATH = Path("~/.kaggle/kaggle.json").expanduser().resolve()
|
| 13 |
+
if KAGGLE_JSON_PATH.exists():
|
| 14 |
+
print(f"Found existing kaggle.json file at {KAGGLE_JSON_PATH}")
|
| 15 |
+
elif KAGGLE_JSON is not None:
|
| 16 |
+
print(
|
| 17 |
+
"KAGGLE_JSON is set as secret. Will be able to be authenticated when downloading files from Kaggle."
|
| 18 |
+
)
|
| 19 |
+
KAGGLE_JSON_PATH.mkdir(parents=True, exist_ok=True)
|
| 20 |
+
KAGGLE_JSON_PATH.write_text(KAGGLE_JSON)
|
| 21 |
+
else:
|
| 22 |
+
print(
|
| 23 |
+
f"No kaggle.json file found at {KAGGLE_JSON_PATH}. You will not be able to download private/gated files from Kaggle."
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
MARKDOWN_DESCRIPTION = """
|
| 28 |
+
# Keggla-importer GUI
|
| 29 |
+
|
| 30 |
+
The fastest way to import a model from KaggleHub to the Hugging Face Hub 🔥
|
| 31 |
+
|
| 32 |
+
Specify a Kaggle handle and a Hugging Face Write Token to import a model from KaggleHub to the Hugging Face Hub.
|
| 33 |
+
|
| 34 |
+
To find the Kaggle handle from a web UI, click on the "download dropdown" and copy the handle from the code snippet.
|
| 35 |
+
Example: `"keras/gemma/keras/gemma_instruct_2b_en"`.
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
if KAGGLE_JSON_PATH.exists():
|
| 39 |
+
MARKDOWN_DESCRIPTION += """
|
| 40 |
+
|
| 41 |
+
**Note**: a `kaggle.json` file exists in the home directory. This means the Space will be able to download **SOME** private/gated files from Kaggle.
|
| 42 |
+
To access other models, please duplicate this Space to a private Space and set the `KAGGLE_JSON` environment variable with the content of the `kaggle.json`
|
| 43 |
+
you've downloaded from your Kaggle user account.
|
| 44 |
+
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def import_model(kaggle_model: str, repo_name: str, token: str) -> Iterable[List[Log]]:
|
| 49 |
+
if not kaggle_model:
|
| 50 |
+
return "Kaggle model is required."
|
| 51 |
+
if not repo_name:
|
| 52 |
+
repo_name = kaggle_model.split("/")[-1]
|
| 53 |
+
if not token:
|
| 54 |
+
return "HF Write Token is required."
|
| 55 |
+
api = HfApi(token=token)
|
| 56 |
+
|
| 57 |
+
runner = LogsViewRunner()
|
| 58 |
+
|
| 59 |
+
yield runner.log(f"Creating HF repo {repo_name}")
|
| 60 |
+
repo_url = api.create_repo(repo_name, exist_ok=True)
|
| 61 |
+
yield runner.log(f"Created HF repo: {repo_url}")
|
| 62 |
+
repo_id = repo_url.repo_id
|
| 63 |
+
|
| 64 |
+
model_id = api.model_info(repo_id)
|
| 65 |
+
if len(model_id.siblings) > 1:
|
| 66 |
+
yield runner.log(
|
| 67 |
+
f"Model repo {repo_id} is not empty. Please delete it or set a different repo name.",
|
| 68 |
+
level="ERROR",
|
| 69 |
+
)
|
| 70 |
+
return
|
| 71 |
+
|
| 72 |
+
yield runner.log(f"Downloading model {kaggle_model} from Kaggle.")
|
| 73 |
+
yield from runner.run_python(kagglehub.model_download, handle=kaggle_model)
|
| 74 |
+
if runner.exit_code != 0:
|
| 75 |
+
yield runner.log("Failed to download model from Kaggle.", level="ERROR")
|
| 76 |
+
api.delete_repo(repo_id=repo_id)
|
| 77 |
+
return
|
| 78 |
+
|
| 79 |
+
cache_path = kagglehub.model_download(kaggle_model) # should be instant
|
| 80 |
+
yield runner.log(f"Model successfully downloaded from Kaggle to {cache_path}.")
|
| 81 |
+
|
| 82 |
+
yield runner.log(f"Uploading model to HF repo {repo_id}.")
|
| 83 |
+
yield from runner.run_python(
|
| 84 |
+
api.upload_folder, repo_id=repo_id, folder_path=cache_path
|
| 85 |
+
)
|
| 86 |
+
if runner.exit_code != 0:
|
| 87 |
+
yield runner.log("Failed to upload model to HF repo.", level="ERROR")
|
| 88 |
+
api.delete_repo(repo_id=repo_id)
|
| 89 |
+
return
|
| 90 |
+
|
| 91 |
+
yield runner.log(f"Model successfully uploaded to HF: {repo_url}.")
|
| 92 |
+
yield runner.log(f"Deleting local cache from {cache_path}.")
|
| 93 |
+
shutil.rmtree(cache_path)
|
| 94 |
+
|
| 95 |
+
yield runner.log("Done!")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
with gr.Blocks() as demo:
|
| 99 |
+
gr.Markdown(MARKDOWN_DESCRIPTION)
|
| 100 |
+
|
| 101 |
+
with gr.Row():
|
| 102 |
+
with gr.Column():
|
| 103 |
+
kaggle_model = gr.Textbox(
|
| 104 |
+
lines=1,
|
| 105 |
+
label="Kaggle Model*",
|
| 106 |
+
placeholder="keras/codegemma/keras/code_gemma_7b_en",
|
| 107 |
+
)
|
| 108 |
+
repo_name = gr.Textbox(
|
| 109 |
+
lines=1,
|
| 110 |
+
label="Repo name",
|
| 111 |
+
placeholder="Optional. Will infer from Kaggle Model if empty.",
|
| 112 |
+
)
|
| 113 |
+
with gr.Column():
|
| 114 |
+
token = gr.Textbox(
|
| 115 |
+
lines=1,
|
| 116 |
+
label="HF Write Token*",
|
| 117 |
+
info="https://hf.co/settings/token",
|
| 118 |
+
type="password",
|
| 119 |
+
placeholder="hf_***",
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
button = gr.Button("Import", variant="primary")
|
| 123 |
+
logs = LogsView(label="Terminal output")
|
| 124 |
+
|
| 125 |
+
button.click(
|
| 126 |
+
fn=import_model, inputs=[kaggle_model, repo_name, token], outputs=[logs]
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
demo.queue(default_concurrency_limit=1).launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
kaggle
|
| 2 |
+
huggingface_hub
|
| 3 |
+
# see https://huggingface.co/spaces/Wauplin/gradio_logsview
|
| 4 |
+
gradio_logsview@https://huggingface.co/spaces/Wauplin/gradio_logsview/resolve/main/gradio_logsview-0.0.5-py3-none-any.whl
|