File size: 6,791 Bytes
28673b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5200597
28673b1
 
 
 
 
 
 
 
 
 
 
 
 
 
3e159b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28673b1
 
 
 
 
 
 
 
3e159b8
 
28673b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
"""
OCR Models Module
Contains all OCR-related functions for different AI models.
"""

import google.generativeai as genai
from mistralai import Mistral
from PIL import Image
import io
import base64
import logging
import openai
import os

# Configure logging
logger = logging.getLogger(__name__)

def gemini_ocr(image: Image.Image):
    """Process OCR using Google's Gemini 2.0 Flash model."""
    try:
        # Initialize Gemini model
        gemini_model = initialize_gemini()
        if not gemini_model:
            return "Gemini OCR error: Failed to initialize Gemini model"
        
        # Convert image to base64
        buffered = io.BytesIO()
        image.save(buffered, format="JPEG")
        img_bytes = buffered.getvalue()
        base64_image = base64.b64encode(img_bytes).decode('utf-8')
        
        # Create the image part for Gemini
        image_part = {
            "mime_type": "image/jpeg",
            "data": base64_image
        }
        
        # Generate content with Gemini
        response = gemini_model.generate_content([
            "Extract and transcribe all text from this image. Return only the transcribed text in markdown format, preserving any formatting like headers, lists, etc.",
            image_part
        ])
        
        markdown_text = response.text
        logger.info("Gemini OCR completed successfully")
        return markdown_text
        
    except Exception as e:
        logger.error(f"Gemini OCR error: {e}")
        return f"Gemini OCR error: {e}"

def mistral_ocr(image: Image.Image):
    """Process OCR using Mistral AI's OCR model."""
    try:
        # Convert image to base64
        buffered = io.BytesIO()
        image.save(buffered, format="JPEG")
        img_bytes = buffered.getvalue()
        base64_image = base64.b64encode(img_bytes).decode('utf-8')
        
        client = Mistral(api_key=os.getenv("MISTRAL_API_KEY"))
        ocr_response = client.ocr.process(
            model="mistral-ocr-latest",
            document={
                "type": "image_url",
                "image_url": f"data:image/jpeg;base64,{base64_image}"
            }
        )
        
        # Extract markdown from the first page if available
        markdown_text = ""
        if hasattr(ocr_response, 'pages') and ocr_response.pages:
            page = ocr_response.pages[0]
            markdown_text = getattr(page, 'markdown', "")
        
        if not markdown_text:
            markdown_text = str(ocr_response)
            
        logger.info("Mistral OCR completed successfully")
        return markdown_text
        
    except Exception as e:
        logger.error(f"Mistral OCR error: {e}")
        return f"Mistral OCR error: {e}"

def openai_ocr(image: Image.Image):
    """Process OCR using OpenAI's GPT-4o model."""
    try:
        # Convert image to base64
        buffered = io.BytesIO()
        image.save(buffered, format="PNG")
        img_bytes = buffered.getvalue()
        base64_image = base64.b64encode(img_bytes).decode('utf-8')
        image_data_url = f"data:image/png;base64,{base64_image}"
        
        # Send request to GPT-4o for OCR
        response = openai.chat.completions.create(
            model="gpt-4o",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": "Extract and transcribe all text from this image. Return only the transcribed text in markdown format, preserving any formatting like headers, lists, etc."},
                        {"type": "image_url", "image_url": {"url": image_data_url}}
                    ]
                }
            ]
        )
        
        markdown_text = response.choices[0].message.content
        logger.info("OpenAI OCR completed successfully")
        return markdown_text
        
    except Exception as e:
        logger.error(f"OpenAI OCR error: {e}")
        return f"OpenAI OCR error: {e}"

def gpt5_ocr(image: Image.Image):
    """Process OCR using OpenAI's GPT-5 model with the same prompt."""
    try:
        # Convert image to base64 (PNG) and use as data URL
        buffered = io.BytesIO()
        image.save(buffered, format="PNG")
        img_bytes = buffered.getvalue()
        base64_image = base64.b64encode(img_bytes).decode('utf-8')
        image_data_url = f"data:image/png;base64,{base64_image}"

        # Use Chat Completions style content for multimodal reliability
        response = openai.chat.completions.create(
            model="gpt-5",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": "Extract and transcribe all text from this image. Return only the transcribed text in markdown format, preserving any formatting like headers, lists, etc."},
                        {"type": "image_url", "image_url": {"url": image_data_url}}
                    ]
                }
            ]
        )

        markdown_text = response.choices[0].message.content
        logger.info("GPT-5 OCR completed successfully")
        return markdown_text
    except Exception as e:
        logger.error(f"GPT-5 OCR error: {e}")
        return f"GPT-5 OCR error: {e}"

def process_model_ocr(image, model_name):
    """Process OCR for a specific model."""
    if model_name == "gemini":
        return gemini_ocr(image)
    elif model_name == "mistral":
        return mistral_ocr(image)
    elif model_name == "openai":
        return openai_ocr(image)
    elif model_name == "gpt5":
        return gpt5_ocr(image)
    else:
        return f"Unknown model: {model_name}"

# Initialize Gemini model
def initialize_gemini():
    """Initialize the Gemini model with API key."""
    gemini_api_key = os.getenv("GEMINI_API_KEY")
    if gemini_api_key:
        genai.configure(api_key=gemini_api_key)
        logger.info("✅ GEMINI_API_KEY loaded successfully")
        return genai.GenerativeModel('gemini-2.0-flash-exp')
    else:
        logger.error("❌ GEMINI_API_KEY not found in environment variables")
        return None

# Initialize OpenAI
def initialize_openai():
    """Initialize OpenAI with API key."""
    openai_api_key = os.getenv("OPENAI_API_KEY")
    if openai_api_key:
        openai.api_key = openai_api_key
        logger.info("✅ OPENAI_API_KEY loaded successfully")
    else:
        logger.error("❌ OPENAI_API_KEY not found in environment variables")

# Initialize Mistral
def initialize_mistral():
    """Initialize Mistral with API key."""
    mistral_api_key = os.getenv("MISTRAL_API_KEY")
    if mistral_api_key:
        logger.info("✅ MISTRAL_API_KEY loaded successfully")
    else:
        logger.error("❌ MISTRAL_API_KEY not found in environment variables")