File size: 6,817 Bytes
be1ec96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from typing import Optional, List
import math

import torch
import torch.nn as nn
import torch.nn.functional as F

from open_clip.transformer import _expand_token, to_2tuple



def resample_abs_pos_embed(
        posemb,
        new_size: List[int],
        old_size: Optional[List[int]] = None,
        num_prefix_tokens: int = 1,
        interpolation: str = 'bicubic',
        antialias: bool = True
):
    # sort out sizes, assume square if old size not provided
    new_size = to_2tuple(new_size)
    new_ntok = new_size[0] * new_size[1]
    if not old_size:
        old_size = int(math.sqrt(posemb.shape[1] - num_prefix_tokens))
    old_size = to_2tuple(old_size)
    if new_size == old_size:  # might not both be same container type
        return posemb

    if num_prefix_tokens:
        posemb_prefix, posemb = posemb[:, :num_prefix_tokens], posemb[:, num_prefix_tokens:]
    else:
        posemb_prefix, posemb = None, posemb

    # do the interpolation
    posemb = posemb.reshape(1, old_size[0], old_size[1], -1).permute(0, 3, 1, 2)
    posemb = F.interpolate(posemb, size=new_size, mode=interpolation, antialias=antialias)
    posemb = posemb.permute(0, 2, 3, 1).reshape(1, new_ntok, -1)


    # add back extra (class, etc) prefix tokens
    if posemb_prefix is not None:
        posemb = torch.cat([posemb_prefix, posemb], dim=1)
    return posemb

class SelfSelfAttention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., ss_attn_iter=1,
                 ss_attn_temp=None):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.ss_attn_iter = ss_attn_iter
        self.ss_attn_temp = ss_attn_temp

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, attn_bias=None, prev_attn=None):
        x = x.transpose(0, 1)
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]
        self.v_values = v
        # original self-attention for the original path
        attn_ori_return = (q @ k.transpose(-2, -1)) * self.scale
        attn_ori = attn_ori_return.softmax(dim=-1)
        attn_ori = self.attn_drop(attn_ori)

        x_ori = (attn_ori @ v).transpose(1, 2).reshape(B, N, C)
        x_ori = self.proj_drop(self.proj(x_ori))

        # GEM
        xs1 = v
        xs2 = k
        xs3 = q

        if self.ss_attn_temp is None:
            pre_norm = torch.norm(x, dim=-1).mean(dim=-1, keepdim=True).unsqueeze(1).unsqueeze(-1)
            inv_temp = pre_norm * self.scale
        else:
            inv_temp = self.ss_attn_temp

        for it in range(self.ss_attn_iter):
            xs1 = F.normalize(xs1, dim=-1)
            xs2 = F.normalize(xs2, dim=-1)
            xs3 = F.normalize(xs3, dim=-1)

            attn_return1 = (xs1 @ xs1.transpose(-2, -1)) * inv_temp
            attn_return2 = (xs2 @ xs2.transpose(-2, -1)) * inv_temp
            attn_return3 = (xs3 @ xs3.transpose(-2, -1)) * inv_temp

            attn1 = (attn_return1).softmax(dim=-1)
            attn2 = (attn_return2).softmax(dim=-1)
            attn3 = (attn_return3).softmax(dim=-1)

            xs1 = attn1 @ xs1
            xs2 = attn2 @ xs2
            xs3 = attn3 @ xs3

        # Assigment to V
        xs1 = F.normalize(xs1, dim=-1)
        xs2 = F.normalize(xs2, dim=-1)
        xs3 = F.normalize(xs3, dim=-1)

        attn_return1 = (xs1 @ xs1.transpose(-2, -1)) * inv_temp
        attn_return2 = (xs2 @ xs2.transpose(-2, -1)) * inv_temp
        attn_return3 = (xs3 @ xs3.transpose(-2, -1)) * inv_temp

        attn1 = (attn_return1).softmax(dim=-1)
        attn2 = (attn_return2).softmax(dim=-1)
        attn3 = (attn_return3).softmax(dim=-1)

        xs1 = attn1 @ v
        xs2 = attn2 @ v
        xs3 = attn3 @ v
        xs = (xs1 + xs2 + xs3) / 3

        x = xs.transpose(1, 2).reshape(B, N, C)
        x = self.proj_drop(self.proj(x))

        return [x.transpose(0, 1), x_ori.transpose(0, 1)]


class GEMResidualBlock(nn.Module):
    def __init__(self, res_block):
        super(GEMResidualBlock, self).__init__()
        self.res_block = res_block

    def forward(self,
                q_x: torch.Tensor,
                k_x: Optional[torch.Tensor] = None,
                v_x: Optional[torch.Tensor] = None,
                attn_mask: Optional[torch.Tensor] = None,
                ):
        if isinstance(q_x, list):
            x_gem, q_x = q_x
        else:
            x_gem = q_x

        x_gem_res, x_ori_res = self.res_block.attn(x=self.res_block.ln_1(q_x))
        x_gem_res, x_ori_res = self.res_block.ls_1(x_gem_res), self.res_block.ls_1(x_ori_res)
        # Original
        x_ori = q_x + x_ori_res
        x_ori = x_ori + self.res_block.ls_2(self.res_block.mlp(self.res_block.ln_2(x_ori)))
        # GEM
        x_gem = x_gem + x_gem_res
        return [x_gem, x_ori]

class GEMViT(nn.Module):
    def __init__(self, vit):
        self.vit = vit

def modified_vit_forward(self, x: torch.Tensor):
        x = self.conv1(x)  # shape = [*, width, grid, grid]
        grid_h, grid_w = x.shape[2:]
        x = x.reshape(x.shape[0], x.shape[1], -1)  # shape = [*, width, grid ** 2]
        x = x.permute(0, 2, 1)  # shape = [*, grid ** 2, width]

        # class embeddings and positional embeddings
        x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1)
        # shape = [*, grid ** 2 + 1, width]

        if x.shape[1] != self.positional_embedding.shape[1]:
            pos_emb = resample_abs_pos_embed(self.positional_embedding.unsqueeze(0),
                                             new_size=[grid_h, grid_w],
                                             # old_size=list(self.grid_size),
                                             num_prefix_tokens=1,
                                             interpolation='bicubic',
                                             antialias=True)

        else:
            pos_emb = self.positional_embedding

        x = x + pos_emb.to(x.dtype)
        # x = x + self.positional_embedding.to(x.dtype)

        x = self.patch_dropout(x)
        x = self.ln_pre(x)

        x = x.permute(1, 0, 2)  # NLD -> LND
        x_gem, x = self.transformer(x)
        x = x.permute(1, 0, 2)  # LND -> NLD
        x_gem = x_gem.permute(1, 0, 2)  # LND -> NLD

        # Apply proj
        x = self.ln_post(x)
        x_gem = self.ln_post(x_gem)
        if self.proj is not None:
            x = x @ self.proj
            x_gem = x_gem @ self.proj

        return [x_gem, x]