File size: 6,583 Bytes
be1ec96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import logging
from typing import Any, Union, List, Optional, Tuple, Dict
import open_clip
from open_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD

import torch
from torchvision import transforms
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import cv2 as cv2

from .gem_wrapper import GEMWrapper


_MODELS = {
    # B/32
    "ViT-B/32": [
        "openai",
        "laion400m_e31",
        "laion400m_e32",
        "laion2b_e16",
        "laion2b_s34b_b79k",
    ],

    "ViT-B/32-quickgelu": [
        "metaclip_400m",
        "metaclip_fullcc"
    ],
    # B/16
    "ViT-B/16": [
        "openai",
        "laion400m_e31",
        "laion400m_e32",
        "laion2b_s34b_b88k",
    ],
    "ViT-B/16-quickgelu": [
        "metaclip_400m",
        "metaclip_fullcc",
    ],
    "ViT-B/16-plus-240": [
        "laion400m_e31",
        "laion400m_e32"
    ],
    # L/14
    "ViT-L/14": [
        "openai",
        "laion400m_e31",
        "laion400m_e32",
        "laion2b_s32b_b82k",
    ],
    "ViT-L/14-quickgelu": [
        "metaclip_400m",
    "metaclip_fullcc"
    ],
    "ViT-L/14-336": [
        "openai",
    ]
}

def available_models() -> List[str]:
    """Returns the names of available GEM-VL models"""
    # _str = "".join([": ".join([key, value]) + "\n" for key, values in _MODELS2.items() for value in values])
    _str = "".join([": ".join([key + " "*(20 - len(key)), value]) + "\n" for key, values in _MODELS.items() for value in values])
    return _str

def get_tokenizer(
        model_name: str = '',
        context_length: Optional[int] = None,
        **kwargs,
):
    """ Wrapper around openclip get_tokenizer function """
    return open_clip.get_tokenizer(model_name=model_name, context_length=context_length, **kwargs)


def get_gem_img_transform(
        img_size:  Union[int, Tuple[int, int]] = (448, 448),
        mean: Optional[Tuple[float, ...]] = None,
        std: Optional[Tuple[float, ...]] = None,
):
    mean = mean or OPENAI_DATASET_MEAN
    std = std or OPENAI_DATASET_STD
    transform = transforms.Compose([
        transforms.Resize(size=img_size, interpolation=transforms.InterpolationMode.BICUBIC),
        transforms.ToTensor(),
        transforms.Normalize(mean, std),
    ])
    return transform


def create_gem_model(
        model_name: str,
        pretrained: Optional[str] = None,
        gem_depth: int = 7,
        ss_attn_iter: int = 1,
        ss_attn_temp: Optional[float] = None,
        precision: str = 'fp32',
        device: Union[str, torch.device] = 'cpu',
        jit: bool = False,
        force_quick_gelu: bool = False,
        force_custom_text: bool = False,
        force_patch_dropout: Optional[float] = None,
        force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
        force_preprocess_cfg: Optional[Dict[str, Any]] = None,
        pretrained_image: bool = False,
        pretrained_hf: bool = True,
        cache_dir: Optional[str] = None,
        output_dict: Optional[bool] = None,
        require_pretrained: bool = False,
        **model_kwargs,
):
    model_name = model_name.replace("/", "-")
    logging.info(f'Loading pretrained {model_name} from pretrained weights {pretrained}...')
    open_clip_model = open_clip.create_model(model_name, pretrained, precision, device, jit, force_quick_gelu, force_custom_text,
                                  force_patch_dropout, force_image_size, force_preprocess_cfg, pretrained_image,
                                  pretrained_hf, cache_dir, output_dict, require_pretrained, **model_kwargs)
    tokenizer = open_clip.get_tokenizer(model_name=model_name)

    gem_model = GEMWrapper(model=open_clip_model, tokenizer=tokenizer, depth=gem_depth,
                           ss_attn_iter=ss_attn_iter, ss_attn_temp=ss_attn_temp)
    logging.info(f'Loaded GEM-{model_name} from pretrained weights {pretrained}!')
    return gem_model

def create_model_and_transforms(
        model_name: str,
        pretrained: Optional[str] = None,
        gem_depth: int = 7,
        precision: str = 'fp32',
        device: Union[str, torch.device] = 'cpu',
        jit: bool = False,
        force_quick_gelu: bool = False,
        force_custom_text: bool = False,
        force_patch_dropout: Optional[float] = None,
        force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
        force_preprocess_cfg: Optional[Dict[str, Any]] = None,
        pretrained_image: bool = False,
        pretrained_hf: bool = True,
        cache_dir: Optional[str] = None,
        output_dict: Optional[bool] = None,
        require_pretrained: bool = False,
        **model_kwargs,
):
    gem_model = create_gem_model(model_name, pretrained, gem_depth, precision, device, jit, force_quick_gelu, force_custom_text,
                                 force_patch_dropout, force_image_size, force_preprocess_cfg, pretrained_image,
                                 pretrained_hf, cache_dir, output_dict, require_pretrained, **model_kwargs)

    transform = get_gem_img_transform(**model_kwargs)
    return gem_model, transform

def visualize(image, text, logits, alpha=0.6, save_path=None):
    W, H = logits.shape[-2:]
    if isinstance(image, Image.Image):
        image = image.resize((W, H))
    elif isinstance(image, torch.Tensor):
        if image.ndim > 3:
            image = image.squeeze(0)
        image_unormed = (image.detach().cpu() * torch.Tensor(OPENAI_DATASET_STD)[:, None, None]) \
                        + torch.Tensor(OPENAI_DATASET_MEAN)[:, None, None]  # undo the normalization
        image = Image.fromarray((image_unormed.permute(1, 2, 0).numpy() * 255).astype('uint8'))  # convert to PIL
    else:
        raise f'image should be either of type PIL.Image.Image or torch.Tensor but found {type(image)}'

    # plot image
    plt.imshow(image)
    plt.axis('off')
    plt.tight_layout()
    plt.show()

    if logits.ndim > 3:
        logits = logits.squeeze(0)
    logits = logits.detach().cpu().numpy()


    img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    logits = (logits * 255).astype('uint8')
    heat_maps = [cv2.applyColorMap(logit, cv2.COLORMAP_JET) for logit in logits]

    vizs = [(1 - alpha) * img_cv + alpha * heat_map for heat_map in heat_maps]
    for viz, cls_name in zip(vizs, text):

        viz = cv2.cvtColor(viz.astype('uint8'), cv2.COLOR_BGR2RGB)
        plt.imshow(viz)
        plt.title(cls_name)
        plt.axis('off')
        plt.tight_layout()
        plt.show()
        if save_path is not None:
            plt.savefig(f'heatmap_{cls_name}.png')