Spaces:
Runtime error
Runtime error
Update modelo.py
Browse files
modelo.py
CHANGED
|
@@ -13,6 +13,8 @@ from langchain.chains import RetrievalQA
|
|
| 13 |
from langchain_openai import ChatOpenAI
|
| 14 |
from typing import List
|
| 15 |
import pandas as pd
|
|
|
|
|
|
|
| 16 |
|
| 17 |
embeddings = HuggingFaceEmbeddings(
|
| 18 |
model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", # Ruta a modelo Pre entrenado
|
|
@@ -56,22 +58,20 @@ class Reranking_retriever(BaseRetriever):
|
|
| 56 |
docs.append(Document(page_content=df.respuestas[i], metadata=df.metadata[i]))
|
| 57 |
return docs
|
| 58 |
|
| 59 |
-
retriever = Reranking_retriever()
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
# prompt_template =
|
| 64 |
-
QA_CHAIN_PROMPT = PromptTemplate.from_template("""
|
| 65 |
-
Usa el siguiente contexto para responder la pregunta.
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
|
|
|
|
|
|
|
| 75 |
llm = ChatOpenAI(model="gpt-3.5-turbo-1106", temperature=0)
|
| 76 |
|
| 77 |
llm_chain = LLMChain(llm=llm, prompt=QA_CHAIN_PROMPT, callbacks=None, verbose=True)
|
|
@@ -82,89 +82,4 @@ def get_chain():
|
|
| 82 |
|
| 83 |
chain = RetrievalQA(combine_documents_chain=combine_documents_chain, callbacks=None, verbose=True, retriever=retriever)
|
| 84 |
|
| 85 |
-
return(chain)
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
from langchain_core.runnables import RunnablePassthrough
|
| 91 |
-
from langchain_core.output_parsers import StrOutputParser
|
| 92 |
-
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
| 93 |
-
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
| 94 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 95 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 96 |
-
from langchain_core.retrievers import BaseRetriever
|
| 97 |
-
from langchain_community.vectorstores import FAISS #Facebook AI Similarity Search
|
| 98 |
-
from sentence_transformers import CrossEncoder
|
| 99 |
-
from langchain_core.documents import Document
|
| 100 |
-
from langchain.prompts import ChatPromptTemplate
|
| 101 |
-
from langchain_openai import ChatOpenAI
|
| 102 |
-
from typing import List
|
| 103 |
-
import pandas as pd
|
| 104 |
-
|
| 105 |
-
embeddings = HuggingFaceEmbeddings(
|
| 106 |
-
model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", # Ruta a modelo Pre entrenado
|
| 107 |
-
model_kwargs={'device':'cpu'}, # Opciones de configuracion del modelo
|
| 108 |
-
encode_kwargs={'normalize_embeddings': False}) # Opciones de Encoding
|
| 109 |
-
|
| 110 |
-
try:
|
| 111 |
-
vectorstore = FAISS.load_local("cache", embeddings)
|
| 112 |
-
except:
|
| 113 |
-
loader = PyPDFDirectoryLoader("data/")
|
| 114 |
-
data = loader.load()
|
| 115 |
-
|
| 116 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=450, chunk_overlap=100, length_function=len)
|
| 117 |
-
docs = text_splitter.split_documents(data)
|
| 118 |
-
|
| 119 |
-
#DB y retriever
|
| 120 |
-
vectorstore = FAISS.from_documents(docs, embeddings) # Create a retriever object from the 'db' with a search configuration where it retrieves up to 4 relevant splits/documents.
|
| 121 |
-
vectorstore.save_local("cache")
|
| 122 |
-
|
| 123 |
-
#Renranker para mejorar respuestas
|
| 124 |
-
model = CrossEncoder('cross-encoder/ms-marco-TinyBERT-L-2-v2', max_length=512) #Por lejos el mejor, los otros no sirven
|
| 125 |
-
class Reranking_retriever(BaseRetriever):
|
| 126 |
-
def _get_relevant_documents(self, query: str, *, run_manager: CallbackManagerForRetrieverRun) -> List[Document]:
|
| 127 |
-
busqueda = vectorstore.similarity_search_with_score(query, k=10, fetch_k=15) # k = 10 numero total de documento a traer previo al re ranking
|
| 128 |
-
|
| 129 |
-
df = pd.DataFrame({ # Funciones lambda toman la ultima variable como input y la previa como iteracionm la primera x es que se retornara
|
| 130 |
-
'scores': list(map(lambda x : x[-1], busqueda)),
|
| 131 |
-
'respuestas': list(map(lambda x : x[0].page_content, busqueda)),
|
| 132 |
-
'metadata': list(map(lambda x : x[0].metadata ,busqueda))})
|
| 133 |
-
|
| 134 |
-
print(df.scores)
|
| 135 |
-
respuestas = df.respuestas.to_list() #lista de respuestas
|
| 136 |
-
|
| 137 |
-
sentence_combinations = [[query, respuesta] for respuesta in respuestas] # So we create the respective sentence combinations
|
| 138 |
-
|
| 139 |
-
scores = model.predict(sentence_combinations) #Aplica cross encoding para ver que para de q y a tienen mayor relacion, en este caso se manda la pregunta en cada una de ellas y se compara una a una con las respuestas
|
| 140 |
-
scores = scores.argsort()[::-1] #Ordena puntajes de mas relevate a menos relevante siendo indice 0 el mas relevante
|
| 141 |
-
|
| 142 |
-
docs = []
|
| 143 |
-
for i in scores[:3]: #Los 3 resulados mas relevantes
|
| 144 |
-
docs.append(Document(page_content=df.respuestas[i], metadata=df.metadata[i]))
|
| 145 |
-
return docs
|
| 146 |
-
|
| 147 |
-
retriever = Reranking_retriever()
|
| 148 |
-
|
| 149 |
-
def get_chain():
|
| 150 |
-
template = """
|
| 151 |
-
Usa el siguiente contexto para responder la pregunta.
|
| 152 |
-
|
| 153 |
-
Contexto
|
| 154 |
-
{contexto}
|
| 155 |
-
|
| 156 |
-
Pregunta: {pregunta}
|
| 157 |
-
Respuesta Util:"""
|
| 158 |
-
|
| 159 |
-
prompt = ChatPromptTemplate.from_template(template)
|
| 160 |
-
|
| 161 |
-
model = ChatOpenAI(model="gpt-3.5-turbo-1106", temperature=0)
|
| 162 |
-
|
| 163 |
-
chain = (
|
| 164 |
-
{"contexto": retriever, "pregunta": RunnablePassthrough()}
|
| 165 |
-
| prompt
|
| 166 |
-
| model
|
| 167 |
-
| StrOutputParser()
|
| 168 |
-
)
|
| 169 |
-
|
| 170 |
return(chain)
|
|
|
|
| 13 |
from langchain_openai import ChatOpenAI
|
| 14 |
from typing import List
|
| 15 |
import pandas as pd
|
| 16 |
+
import os
|
| 17 |
+
os.environ["OPENAI_API_KEY"] = st.secrets("OPENAI_API_KEY")
|
| 18 |
|
| 19 |
embeddings = HuggingFaceEmbeddings(
|
| 20 |
model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", # Ruta a modelo Pre entrenado
|
|
|
|
| 58 |
docs.append(Document(page_content=df.respuestas[i], metadata=df.metadata[i]))
|
| 59 |
return docs
|
| 60 |
|
| 61 |
+
retriever = Reranking_retriever() #Mi retriever personalizado, de 10 elementos retorna 3 filtrando por un cross encoder
|
| 62 |
|
| 63 |
+
QA_CHAIN_PROMPT = PromptTemplate.from_template("""
|
| 64 |
+
Usa el siguiente contexto para responder la pregunta.
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
Contexto
|
| 67 |
+
{contexto}
|
| 68 |
|
| 69 |
+
Pregunta: {question}
|
| 70 |
+
Respuesta Util:"""
|
| 71 |
+
)
|
|
|
|
| 72 |
|
| 73 |
+
def get_chain():
|
| 74 |
+
|
| 75 |
llm = ChatOpenAI(model="gpt-3.5-turbo-1106", temperature=0)
|
| 76 |
|
| 77 |
llm_chain = LLMChain(llm=llm, prompt=QA_CHAIN_PROMPT, callbacks=None, verbose=True)
|
|
|
|
| 82 |
|
| 83 |
chain = RetrievalQA(combine_documents_chain=combine_documents_chain, callbacks=None, verbose=True, retriever=retriever)
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
return(chain)
|