MiniCPM-V-4_5 / app.py
orrzxz's picture
Update app.py
f885ed8 verified
import gradio as gr
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
import numpy as np
import tempfile
import os
from decord import VideoReader, cpu
from scipy.spatial import cKDTree
import math
import warnings
import spaces
warnings.filterwarnings("ignore")
# Global variables for model and tokenizer
model = None
tokenizer = None
def load_model():
"""Load the MiniCPM-V-4.5 model and tokenizer"""
global model, tokenizer
if model is None:
print("Loading MiniCPM-V-4.5 model...")
model = AutoModel.from_pretrained(
'openbmb/MiniCPM-V-4_5',
trust_remote_code=True,
attn_implementation='sdpa',
torch_dtype=torch.bfloat16,
device_map="auto"
)
model = model.eval()
tokenizer = AutoTokenizer.from_pretrained(
'openbmb/MiniCPM-V-4_5',
trust_remote_code=True
)
print("Model loaded successfully!")
return model, tokenizer
def map_to_nearest_scale(values, scale):
"""Map values to nearest scale for temporal IDs"""
tree = cKDTree(np.asarray(scale)[:, None])
_, indices = tree.query(np.asarray(values)[:, None])
return np.asarray(scale)[indices]
def group_array(arr, size):
"""Group array into chunks of specified size"""
return [arr[i:i+size] for i in range(0, len(arr), size)]
def uniform_sample(l, n):
"""Uniformly sample n items from list l"""
gap = len(l) / n
idxs = [int(i * gap + gap / 2) for i in range(n)]
return [l[i] for i in idxs]
def encode_video(video_path, choose_fps=3, max_frames=180, max_packing=3, time_scale=0.1):
"""Encode video frames with temporal IDs for the model"""
vr = VideoReader(video_path, ctx=cpu(0))
fps = vr.get_avg_fps()
video_duration = len(vr) / fps
if choose_fps * int(video_duration) <= max_frames:
packing_nums = 1
choose_frames = round(min(choose_fps, round(fps)) * min(max_frames, video_duration))
else:
packing_nums = math.ceil(video_duration * choose_fps / max_frames)
if packing_nums <= max_packing:
choose_frames = round(video_duration * choose_fps)
else:
choose_frames = round(max_frames * max_packing)
packing_nums = max_packing
frame_idx = [i for i in range(0, len(vr))]
frame_idx = np.array(uniform_sample(frame_idx, choose_frames))
print(f'Video duration: {video_duration:.2f}s, frames: {len(frame_idx)}, packing: {packing_nums}')
frames = vr.get_batch(frame_idx).asnumpy()
frame_idx_ts = frame_idx / fps
scale = np.arange(0, video_duration, time_scale)
frame_ts_id = map_to_nearest_scale(frame_idx_ts, scale) / time_scale
frame_ts_id = frame_ts_id.astype(np.int32)
frames = [Image.fromarray(v.astype('uint8')).convert('RGB') for v in frames]
frame_ts_id_group = group_array(frame_ts_id, packing_nums)
return frames, frame_ts_id_group
@spaces.GPU
def process_input(
file_input,
user_prompt,
system_prompt,
fps,
context_size,
temperature,
enable_thinking
):
"""Process user input and generate response"""
try:
# Load model if not already loaded
model, tokenizer = load_model()
if file_input is None:
return "Please upload an image or video file."
# Determine if input is image or video
file_path = file_input
file_ext = os.path.splitext(file_path)[1].lower()
is_video = file_ext in ['.mp4', '.avi', '.mov', '.mkv', '.webm', '.m4v']
# Prepare messages
msgs = []
# Add system prompt if provided
if system_prompt and system_prompt.strip():
msgs.append({'role': 'system', 'content': system_prompt.strip()})
if is_video:
# Process video
frames, frame_ts_id_group = encode_video(file_path, choose_fps=fps)
msgs.append({'role': 'user', 'content': frames + [user_prompt]})
# Generate response for video
answer = model.chat(
msgs=msgs,
tokenizer=tokenizer,
use_image_id=False,
max_slice_nums=1,
temporal_ids=frame_ts_id_group,
enable_thinking=enable_thinking,
max_new_tokens=context_size,
temperature=temperature
)
else:
# Process image
image = Image.open(file_path).convert('RGB')
msgs.append({'role': 'user', 'content': [image, user_prompt]})
# Generate response for image
answer = model.chat(
msgs=msgs,
tokenizer=tokenizer,
enable_thinking=enable_thinking,
max_new_tokens=context_size,
temperature=temperature
)
return answer
except Exception as e:
return f"Error processing input: {str(e)}"
def create_interface():
"""Create and configure Gradio interface"""
with gr.Blocks(title="MiniCPM-V-4.5 Multimodal Chat") as iface:
gr.Markdown("""
# MiniCPM-V-4.5 Multimodal Chat
A powerful 8B parameter multimodal model that can understand images and videos with GPT-4V level performance.
""")
with gr.Row():
with gr.Column(scale=1):
# File input
file_input = gr.File(
label="Upload Image or Video",
file_types=["image", "video"]
)
# Video FPS setting
fps_slider = gr.Slider(
minimum=1,
maximum=30,
value=5,
step=1,
label="Video FPS"
)
# Context size
context_size = gr.Slider(
minimum=512,
maximum=4096,
value=2048,
step=256,
label="Max Output Tokens"
)
# Temperature
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.6,
step=0.1,
label="Temperature"
)
# Thinking mode
enable_thinking = gr.Checkbox(
label="Enable Deep Thinking",
value=False
)
with gr.Column(scale=2):
# System prompt
system_prompt = gr.Textbox(
label="System Prompt (Optional)",
placeholder="Enter system instructions here...",
lines=3
)
# User prompt
user_prompt = gr.Textbox(
label="Your Question",
placeholder="Describe what you see in the image/video, or ask a specific question...",
lines=4
)
# Submit button
submit_btn = gr.Button("Generate Response", variant="primary")
# Output
output = gr.Textbox(
label="Model Response",
lines=15
)
# Event handlers
submit_btn.click(
fn=process_input,
inputs=[
file_input,
user_prompt,
system_prompt,
fps_slider,
context_size,
temperature,
enable_thinking
],
outputs=output
)
user_prompt.submit(
fn=process_input,
inputs=[
file_input,
user_prompt,
system_prompt,
fps_slider,
context_size,
temperature,
enable_thinking
],
outputs=output
)
return iface
if __name__ == "__main__":
# Create and launch interface
demo = create_interface()
demo.launch(share=True)