Update app.py
Browse files
app.py
CHANGED
|
@@ -3,145 +3,48 @@ import os
|
|
| 3 |
import glob
|
| 4 |
import base64
|
| 5 |
import time
|
| 6 |
-
import shutil
|
| 7 |
-
import zipfile
|
| 8 |
-
import re
|
| 9 |
-
import logging
|
| 10 |
-
import asyncio
|
| 11 |
-
from io import BytesIO
|
| 12 |
-
from datetime import datetime
|
| 13 |
-
import pytz
|
| 14 |
-
from dataclasses import dataclass
|
| 15 |
-
from typing import Optional
|
| 16 |
-
|
| 17 |
import streamlit as st
|
| 18 |
-
import pandas as pd
|
| 19 |
-
import torch
|
| 20 |
import fitz
|
| 21 |
import requests
|
| 22 |
from PIL import Image
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
import
|
| 28 |
-
|
| 29 |
-
openai
|
|
|
|
| 30 |
|
| 31 |
-
# --- Logging ---
|
| 32 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 33 |
logger = logging.getLogger(__name__)
|
| 34 |
-
log_records = []
|
| 35 |
-
class LogCaptureHandler(logging.Handler):
|
| 36 |
-
def emit(self, record):
|
| 37 |
-
log_records.append(record)
|
| 38 |
-
logger.addHandler(LogCaptureHandler())
|
| 39 |
|
| 40 |
-
# --- Streamlit Page Config ---
|
| 41 |
st.set_page_config(
|
| 42 |
-
page_title="AI
|
| 43 |
page_icon="🤖",
|
| 44 |
layout="wide",
|
| 45 |
initial_sidebar_state="expanded",
|
| 46 |
-
menu_items={
|
| 47 |
-
'Get Help': 'https://huggingface.co/awacke1',
|
| 48 |
-
'Report a Bug': 'https://huggingface.co/spaces/awacke1',
|
| 49 |
-
'About': "AI Vision & SFT Titans: PDFs, OCR, Image Gen, Line Drawings, Custom Diffusion, and SFT on CPU! 🌌"
|
| 50 |
-
}
|
| 51 |
)
|
| 52 |
|
| 53 |
-
#
|
| 54 |
if 'history' not in st.session_state:
|
| 55 |
st.session_state['history'] = []
|
| 56 |
-
if 'builder' not in st.session_state:
|
| 57 |
-
st.session_state['builder'] = None
|
| 58 |
-
if 'model_loaded' not in st.session_state:
|
| 59 |
-
st.session_state['model_loaded'] = False
|
| 60 |
if 'processing' not in st.session_state:
|
| 61 |
st.session_state['processing'] = {}
|
| 62 |
if 'asset_checkboxes' not in st.session_state:
|
| 63 |
st.session_state['asset_checkboxes'] = {}
|
| 64 |
-
if 'downloaded_pdfs' not in st.session_state:
|
| 65 |
-
st.session_state['downloaded_pdfs'] = {}
|
| 66 |
if 'unique_counter' not in st.session_state:
|
| 67 |
st.session_state['unique_counter'] = 0
|
| 68 |
-
if '
|
| 69 |
-
st.session_state['
|
| 70 |
-
if 'selected_model' not in st.session_state:
|
| 71 |
-
st.session_state['selected_model'] = "None"
|
| 72 |
-
if 'cam0_file' not in st.session_state:
|
| 73 |
-
st.session_state['cam0_file'] = None
|
| 74 |
-
if 'cam1_file' not in st.session_state:
|
| 75 |
-
st.session_state['cam1_file'] = None
|
| 76 |
|
| 77 |
-
#
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
domain: Optional[str] = None
|
| 84 |
-
model_type: str = "causal_lm"
|
| 85 |
-
@property
|
| 86 |
-
def model_path(self):
|
| 87 |
-
return f"models/{self.name}"
|
| 88 |
|
| 89 |
-
@dataclass
|
| 90 |
-
class DiffusionConfig:
|
| 91 |
-
name: str
|
| 92 |
-
base_model: str
|
| 93 |
-
size: str
|
| 94 |
-
domain: Optional[str] = None
|
| 95 |
-
@property
|
| 96 |
-
def model_path(self):
|
| 97 |
-
return f"diffusion_models/{self.name}"
|
| 98 |
-
|
| 99 |
-
# --- Model Builders ---
|
| 100 |
-
class ModelBuilder:
|
| 101 |
-
def __init__(self):
|
| 102 |
-
self.config = None
|
| 103 |
-
self.model = None
|
| 104 |
-
self.tokenizer = None
|
| 105 |
-
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂",
|
| 106 |
-
"Training complete! Time for a binary coffee break. ☕"]
|
| 107 |
-
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
| 108 |
-
with st.spinner(f"Loading {model_path}... ⏳"):
|
| 109 |
-
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 110 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 111 |
-
if self.tokenizer.pad_token is None:
|
| 112 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 113 |
-
if config:
|
| 114 |
-
self.config = config
|
| 115 |
-
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 116 |
-
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
|
| 117 |
-
return self
|
| 118 |
-
def save_model(self, path: str):
|
| 119 |
-
with st.spinner("Saving model... 💾"):
|
| 120 |
-
os.makedirs(os.path.dirname(path), exist_ok=True)
|
| 121 |
-
self.model.save_pretrained(path)
|
| 122 |
-
self.tokenizer.save_pretrained(path)
|
| 123 |
-
st.success(f"Model saved at {path}! ✅")
|
| 124 |
-
|
| 125 |
-
class DiffusionBuilder:
|
| 126 |
-
def __init__(self):
|
| 127 |
-
self.config = None
|
| 128 |
-
self.pipeline = None
|
| 129 |
-
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
|
| 130 |
-
with st.spinner(f"Loading diffusion model {model_path}... ⏳"):
|
| 131 |
-
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
|
| 132 |
-
if config:
|
| 133 |
-
self.config = config
|
| 134 |
-
st.success("Diffusion model loaded! 🎨")
|
| 135 |
-
return self
|
| 136 |
-
def save_model(self, path: str):
|
| 137 |
-
with st.spinner("Saving diffusion model... 💾"):
|
| 138 |
-
os.makedirs(os.path.dirname(path), exist_ok=True)
|
| 139 |
-
self.pipeline.save_pretrained(path)
|
| 140 |
-
st.success(f"Diffusion model saved at {path}! ✅")
|
| 141 |
-
def generate(self, prompt: str):
|
| 142 |
-
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
| 143 |
-
|
| 144 |
-
# --- Utility Functions ---
|
| 145 |
def generate_filename(sequence, ext="png"):
|
| 146 |
timestamp = time.strftime("%d%m%Y%H%M%S")
|
| 147 |
return f"{sequence}_{timestamp}.{ext}"
|
|
@@ -156,23 +59,15 @@ def get_download_link(file_path, mime_type="application/pdf", label="Download"):
|
|
| 156 |
b64 = base64.b64encode(data).decode()
|
| 157 |
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>'
|
| 158 |
|
| 159 |
-
def
|
| 160 |
-
|
| 161 |
-
for root, _, files in os.walk(directory_path):
|
| 162 |
-
for file in files:
|
| 163 |
-
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
|
| 164 |
-
|
| 165 |
-
def get_model_files(model_type="causal_lm"):
|
| 166 |
-
path = "models/*" if model_type == "causal_lm" else "diffusion_models/*"
|
| 167 |
-
dirs = [d for d in glob.glob(path) if os.path.isdir(d)]
|
| 168 |
-
return dirs if dirs else ["None"]
|
| 169 |
-
|
| 170 |
-
def get_gallery_files(file_types=["png", "pdf"]):
|
| 171 |
-
return sorted(list(set([f for ext in file_types for f in glob.glob(f"*.{ext}")]))) # Deduplicate files
|
| 172 |
|
| 173 |
def get_pdf_files():
|
| 174 |
return sorted(glob.glob("*.pdf"))
|
| 175 |
|
|
|
|
|
|
|
|
|
|
| 176 |
def download_pdf(url, output_path):
|
| 177 |
try:
|
| 178 |
response = requests.get(url, stream=True, timeout=10)
|
|
@@ -185,494 +80,149 @@ def download_pdf(url, output_path):
|
|
| 185 |
logger.error(f"Failed to download {url}: {e}")
|
| 186 |
return False
|
| 187 |
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 199 |
-
output_file = generate_filename("
|
| 200 |
pix.save(output_file)
|
| 201 |
output_files.append(output_file)
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
doc.close()
|
| 217 |
-
elapsed = int(time.time() - start_time)
|
| 218 |
-
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
|
| 219 |
-
update_gallery()
|
| 220 |
-
return output_files
|
| 221 |
-
except Exception as e:
|
| 222 |
-
status.error(f"Failed to process PDF: {str(e)}")
|
| 223 |
-
return []
|
| 224 |
-
|
| 225 |
-
async def process_ocr(image, output_file):
|
| 226 |
-
start_time = time.time()
|
| 227 |
-
status = st.empty()
|
| 228 |
-
status.text("Processing GOT-OCR2_0... (0s)")
|
| 229 |
-
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
|
| 230 |
-
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
| 231 |
-
temp_file = f"temp_{int(time.time())}.png"
|
| 232 |
-
image.save(temp_file)
|
| 233 |
-
result = model.chat(tokenizer, temp_file, ocr_type='ocr')
|
| 234 |
-
os.remove(temp_file)
|
| 235 |
-
elapsed = int(time.time() - start_time)
|
| 236 |
-
status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
|
| 237 |
-
async with aiofiles.open(output_file, "w") as f:
|
| 238 |
-
await f.write(result)
|
| 239 |
-
update_gallery()
|
| 240 |
-
return result
|
| 241 |
-
|
| 242 |
-
async def process_image_gen(prompt, output_file):
|
| 243 |
-
start_time = time.time()
|
| 244 |
-
status = st.empty()
|
| 245 |
-
status.text("Processing Image Gen... (0s)")
|
| 246 |
-
if st.session_state['builder'] and isinstance(st.session_state['builder'], DiffusionBuilder) and st.session_state['builder'].pipeline:
|
| 247 |
-
pipeline = st.session_state['builder'].pipeline
|
| 248 |
-
else:
|
| 249 |
-
pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
|
| 250 |
-
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
|
| 251 |
-
elapsed = int(time.time() - start_time)
|
| 252 |
-
status.text(f"Image Gen completed in {elapsed}s!")
|
| 253 |
-
gen_image.save(output_file)
|
| 254 |
-
update_gallery()
|
| 255 |
-
return gen_image
|
| 256 |
|
| 257 |
-
# --- New Function: Process an image (PIL) with a custom prompt using GPT ---
|
| 258 |
-
def process_image_with_prompt(image, prompt, model="o3-mini-high"):
|
| 259 |
-
buffered = BytesIO()
|
| 260 |
-
image.save(buffered, format="PNG")
|
| 261 |
-
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 262 |
-
messages = [{
|
| 263 |
-
"role": "user",
|
| 264 |
-
"content": [
|
| 265 |
-
{"type": "text", "text": prompt},
|
| 266 |
-
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}"}}
|
| 267 |
-
]
|
| 268 |
-
}]
|
| 269 |
-
try:
|
| 270 |
-
response = openai.ChatCompletion.create(model=model, messages=messages)
|
| 271 |
-
return response.choices[0].message.content
|
| 272 |
-
except Exception as e:
|
| 273 |
-
return f"Error processing image with GPT: {str(e)}"
|
| 274 |
-
|
| 275 |
-
# --- Gallery Update ---
|
| 276 |
def update_gallery():
|
| 277 |
all_files = get_gallery_files()
|
| 278 |
if all_files:
|
| 279 |
st.sidebar.subheader("Asset Gallery 📸📖")
|
| 280 |
cols = st.sidebar.columns(2)
|
| 281 |
-
for idx, file in enumerate(all_files[:
|
| 282 |
with cols[idx % 2]:
|
| 283 |
st.session_state['unique_counter'] += 1
|
| 284 |
unique_id = st.session_state['unique_counter']
|
| 285 |
if file.endswith('.png'):
|
| 286 |
st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True)
|
| 287 |
-
|
| 288 |
doc = fitz.open(file)
|
| 289 |
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
|
| 290 |
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 291 |
st.image(img, caption=os.path.basename(file), use_container_width=True)
|
| 292 |
doc.close()
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
update_gallery()
|
| 303 |
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
with
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
st.
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
])
|
| 325 |
-
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf_process, tab_image_process, tab_md_gallery) = tabs
|
| 326 |
-
|
| 327 |
-
# === Tab: Camera Snap (existing) ===
|
| 328 |
-
with tab_camera:
|
| 329 |
-
st.header("Camera Snap 📷")
|
| 330 |
-
st.subheader("Single Capture")
|
| 331 |
-
cols = st.columns(2)
|
| 332 |
-
with cols[0]:
|
| 333 |
-
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
|
| 334 |
-
if cam0_img:
|
| 335 |
-
filename = generate_filename("cam0")
|
| 336 |
-
if st.session_state['cam0_file'] and os.path.exists(st.session_state['cam0_file']):
|
| 337 |
-
os.remove(st.session_state['cam0_file'])
|
| 338 |
-
with open(filename, "wb") as f:
|
| 339 |
-
f.write(cam0_img.getvalue())
|
| 340 |
-
st.session_state['cam0_file'] = filename
|
| 341 |
-
entry = f"Snapshot from Cam 0: {filename}"
|
| 342 |
-
if entry not in st.session_state['history']:
|
| 343 |
-
st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 0:")] + [entry]
|
| 344 |
-
st.image(Image.open(filename), caption="Camera 0", use_container_width=True)
|
| 345 |
-
logger.info(f"Saved snapshot from Camera 0: {filename}")
|
| 346 |
-
update_gallery()
|
| 347 |
-
with cols[1]:
|
| 348 |
-
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
|
| 349 |
-
if cam1_img:
|
| 350 |
-
filename = generate_filename("cam1")
|
| 351 |
-
if st.session_state['cam1_file'] and os.path.exists(st.session_state['cam1_file']):
|
| 352 |
-
os.remove(st.session_state['cam1_file'])
|
| 353 |
-
with open(filename, "wb") as f:
|
| 354 |
-
f.write(cam1_img.getvalue())
|
| 355 |
-
st.session_state['cam1_file'] = filename
|
| 356 |
-
entry = f"Snapshot from Cam 1: {filename}"
|
| 357 |
-
if entry not in st.session_state['history']:
|
| 358 |
-
st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 1:")] + [entry]
|
| 359 |
-
st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
|
| 360 |
-
logger.info(f"Saved snapshot from Camera 1: {filename}")
|
| 361 |
update_gallery()
|
| 362 |
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
st.
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
"
|
| 371 |
-
"
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
"
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
]
|
| 381 |
-
st.session_state['pdf_urls'] = "\n".join(example_urls)
|
| 382 |
-
|
| 383 |
-
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
|
| 384 |
-
if st.button("Robo-Download 🤖"):
|
| 385 |
-
urls = url_input.strip().split("\n")
|
| 386 |
-
progress_bar = st.progress(0)
|
| 387 |
-
status_text = st.empty()
|
| 388 |
-
total_urls = len(urls)
|
| 389 |
-
existing_pdfs = get_pdf_files()
|
| 390 |
-
for idx, url in enumerate(urls):
|
| 391 |
-
if url:
|
| 392 |
-
output_path = pdf_url_to_filename(url)
|
| 393 |
-
status_text.text(f"Fetching {idx + 1}/{total_urls}: {os.path.basename(output_path)}...")
|
| 394 |
-
if output_path not in existing_pdfs:
|
| 395 |
-
if download_pdf(url, output_path):
|
| 396 |
-
st.session_state['downloaded_pdfs'][url] = output_path
|
| 397 |
-
logger.info(f"Downloaded PDF from {url} to {output_path}")
|
| 398 |
-
entry = f"Downloaded PDF: {output_path}"
|
| 399 |
-
if entry not in st.session_state['history']:
|
| 400 |
-
st.session_state['history'].append(entry)
|
| 401 |
-
st.session_state['asset_checkboxes'][output_path] = True
|
| 402 |
-
else:
|
| 403 |
-
st.error(f"Failed to nab {url} 😿")
|
| 404 |
-
else:
|
| 405 |
-
st.info(f"Already got {os.path.basename(output_path)}! Skipping... 🐾")
|
| 406 |
-
st.session_state['downloaded_pdfs'][url] = output_path
|
| 407 |
-
progress_bar.progress((idx + 1) / total_urls)
|
| 408 |
-
status_text.text("Robo-Download complete! 🚀")
|
| 409 |
update_gallery()
|
| 410 |
-
mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode")
|
| 411 |
-
if st.button("Snapshot Selected 📸"):
|
| 412 |
-
selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)]
|
| 413 |
-
if selected_pdfs:
|
| 414 |
-
for pdf_path in selected_pdfs:
|
| 415 |
-
mode_key = {"Single Page (High-Res)": "single", "Two Pages (High-Res)": "twopage", "All Pages (High-Res)": "allpages"}[mode]
|
| 416 |
-
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
|
| 417 |
-
for snapshot in snapshots:
|
| 418 |
-
st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
|
| 419 |
-
st.session_state['asset_checkboxes'][snapshot] = True
|
| 420 |
-
update_gallery()
|
| 421 |
-
else:
|
| 422 |
-
st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar.")
|
| 423 |
-
|
| 424 |
-
# === Tab: Test OCR (existing) ===
|
| 425 |
-
with tab_ocr:
|
| 426 |
-
st.header("Test OCR 🔍")
|
| 427 |
-
all_files = get_gallery_files()
|
| 428 |
-
if all_files:
|
| 429 |
-
if st.button("OCR All Assets 🚀"):
|
| 430 |
-
full_text = "# OCR Results\n\n"
|
| 431 |
-
for file in all_files:
|
| 432 |
-
if file.endswith('.png'):
|
| 433 |
-
image = Image.open(file)
|
| 434 |
-
else:
|
| 435 |
-
doc = fitz.open(file)
|
| 436 |
-
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 437 |
-
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 438 |
-
doc.close()
|
| 439 |
-
output_file = generate_filename(f"ocr_{os.path.basename(file)}", "txt")
|
| 440 |
-
result = asyncio.run(process_ocr(image, output_file))
|
| 441 |
-
full_text += f"## {os.path.basename(file)}\n\n{result}\n\n"
|
| 442 |
-
entry = f"OCR Test: {file} -> {output_file}"
|
| 443 |
-
if entry not in st.session_state['history']:
|
| 444 |
-
st.session_state['history'].append(entry)
|
| 445 |
-
md_output_file = f"full_ocr_{int(time.time())}.md"
|
| 446 |
-
with open(md_output_file, "w") as f:
|
| 447 |
-
f.write(full_text)
|
| 448 |
-
st.success(f"Full OCR saved to {md_output_file}")
|
| 449 |
-
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
|
| 450 |
-
selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select")
|
| 451 |
-
if selected_file:
|
| 452 |
-
if selected_file.endswith('.png'):
|
| 453 |
-
image = Image.open(selected_file)
|
| 454 |
-
else:
|
| 455 |
-
doc = fitz.open(selected_file)
|
| 456 |
-
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 457 |
-
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 458 |
-
doc.close()
|
| 459 |
-
st.image(image, caption="Input Image", use_container_width=True)
|
| 460 |
-
if st.button("Run OCR 🚀", key="ocr_run"):
|
| 461 |
-
output_file = generate_filename("ocr_output", "txt")
|
| 462 |
-
st.session_state['processing']['ocr'] = True
|
| 463 |
-
result = asyncio.run(process_ocr(image, output_file))
|
| 464 |
-
entry = f"OCR Test: {selected_file} -> {output_file}"
|
| 465 |
-
if entry not in st.session_state['history']:
|
| 466 |
-
st.session_state['history'].append(entry)
|
| 467 |
-
st.text_area("OCR Result", result, height=200, key="ocr_result")
|
| 468 |
-
st.success(f"OCR output saved to {output_file}")
|
| 469 |
-
st.session_state['processing']['ocr'] = False
|
| 470 |
-
if selected_file.endswith('.pdf') and st.button("OCR All Pages 🚀", key="ocr_all_pages"):
|
| 471 |
-
doc = fitz.open(selected_file)
|
| 472 |
-
full_text = f"# OCR Results for {os.path.basename(selected_file)}\n\n"
|
| 473 |
-
for i in range(len(doc)):
|
| 474 |
-
pix = doc[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 475 |
-
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 476 |
-
output_file = generate_filename(f"ocr_page_{i}", "txt")
|
| 477 |
-
result = asyncio.run(process_ocr(image, output_file))
|
| 478 |
-
full_text += f"## Page {i + 1}\n\n{result}\n\n"
|
| 479 |
-
entry = f"OCR Test: {selected_file} Page {i + 1} -> {output_file}"
|
| 480 |
-
if entry not in st.session_state['history']:
|
| 481 |
-
st.session_state['history'].append(entry)
|
| 482 |
-
md_output_file = f"full_ocr_{os.path.basename(selected_file)}_{int(time.time())}.md"
|
| 483 |
-
with open(md_output_file, "w") as f:
|
| 484 |
-
f.write(full_text)
|
| 485 |
-
st.success(f"Full OCR saved to {md_output_file}")
|
| 486 |
-
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
|
| 487 |
-
else:
|
| 488 |
-
st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!")
|
| 489 |
-
|
| 490 |
-
# === Tab: Build Titan (existing) ===
|
| 491 |
-
with tab_build:
|
| 492 |
-
st.header("Build Titan 🌱")
|
| 493 |
-
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
|
| 494 |
-
base_model = st.selectbox("Select Tiny Model",
|
| 495 |
-
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else
|
| 496 |
-
["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"])
|
| 497 |
-
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
|
| 498 |
-
domain = st.text_input("Target Domain", "general")
|
| 499 |
-
if st.button("Download Model ⬇️"):
|
| 500 |
-
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small", domain=domain)
|
| 501 |
-
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
| 502 |
-
builder.load_model(base_model, config)
|
| 503 |
-
builder.save_model(config.model_path)
|
| 504 |
-
st.session_state['builder'] = builder
|
| 505 |
-
st.session_state['model_loaded'] = True
|
| 506 |
-
st.session_state['selected_model_type'] = model_type
|
| 507 |
-
st.session_state['selected_model'] = config.model_path
|
| 508 |
-
entry = f"Built {model_type} model: {model_name}"
|
| 509 |
-
if entry not in st.session_state['history']:
|
| 510 |
-
st.session_state['history'].append(entry)
|
| 511 |
-
st.success(f"Model downloaded and saved to {config.model_path}! 🎉")
|
| 512 |
-
st.experimental_rerun()
|
| 513 |
-
|
| 514 |
-
# === Tab: Test Image Gen (existing) ===
|
| 515 |
-
with tab_imggen:
|
| 516 |
-
st.header("Test Image Gen 🎨")
|
| 517 |
-
all_files = get_gallery_files()
|
| 518 |
-
if all_files:
|
| 519 |
-
selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select")
|
| 520 |
-
if selected_file:
|
| 521 |
-
if selected_file.endswith('.png'):
|
| 522 |
-
image = Image.open(selected_file)
|
| 523 |
-
else:
|
| 524 |
-
doc = fitz.open(selected_file)
|
| 525 |
-
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 526 |
-
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 527 |
-
doc.close()
|
| 528 |
-
st.image(image, caption="Reference Image", use_container_width=True)
|
| 529 |
-
prompt = st.text_area("Prompt", "Generate a neon superhero version of this image", key="gen_prompt")
|
| 530 |
-
if st.button("Run Image Gen 🚀", key="gen_run"):
|
| 531 |
-
output_file = generate_filename("gen_output", "png")
|
| 532 |
-
st.session_state['processing']['gen'] = True
|
| 533 |
-
result = asyncio.run(process_image_gen(prompt, output_file))
|
| 534 |
-
entry = f"Image Gen Test: {prompt} -> {output_file}"
|
| 535 |
-
if entry not in st.session_state['history']:
|
| 536 |
-
st.session_state['history'].append(entry)
|
| 537 |
-
st.image(result, caption="Generated Image", use_container_width=True)
|
| 538 |
-
st.success(f"Image saved to {output_file}")
|
| 539 |
-
st.session_state['processing']['gen'] = False
|
| 540 |
-
else:
|
| 541 |
-
st.warning("No images or PDFs in gallery yet. Use Camera Snap or Download PDFs!")
|
| 542 |
-
update_gallery()
|
| 543 |
-
|
| 544 |
-
# === New Tab: PDF Process ===
|
| 545 |
-
with tab_pdf_process:
|
| 546 |
-
st.header("PDF Process")
|
| 547 |
-
st.subheader("Upload PDFs for GPT-based text extraction")
|
| 548 |
-
uploaded_pdfs = st.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader")
|
| 549 |
-
view_mode = st.selectbox("View Mode", ["Single Page", "Double Page"], key="pdf_view_mode")
|
| 550 |
-
if st.button("Process Uploaded PDFs", key="process_pdfs"):
|
| 551 |
-
combined_text = ""
|
| 552 |
-
for pdf_file in uploaded_pdfs:
|
| 553 |
-
pdf_bytes = pdf_file.read()
|
| 554 |
-
temp_pdf_path = f"temp_{pdf_file.name}"
|
| 555 |
-
with open(temp_pdf_path, "wb") as f:
|
| 556 |
-
f.write(pdf_bytes)
|
| 557 |
-
try:
|
| 558 |
-
doc = fitz.open(temp_pdf_path)
|
| 559 |
-
st.write(f"Processing {pdf_file.name} with {len(doc)} pages")
|
| 560 |
-
if view_mode == "Single Page":
|
| 561 |
-
for i, page in enumerate(doc):
|
| 562 |
-
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 563 |
-
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 564 |
-
st.image(img, caption=f"{pdf_file.name} Page {i+1}")
|
| 565 |
-
gpt_text = process_image_with_prompt(img, "Extract the electronic text from image")
|
| 566 |
-
combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"
|
| 567 |
-
else: # Double Page: combine two consecutive pages
|
| 568 |
-
pages = list(doc)
|
| 569 |
-
for i in range(0, len(pages), 2):
|
| 570 |
-
if i+1 < len(pages):
|
| 571 |
-
pix1 = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 572 |
-
img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples)
|
| 573 |
-
pix2 = pages[i+1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 574 |
-
img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples)
|
| 575 |
-
total_width = img1.width + img2.width
|
| 576 |
-
max_height = max(img1.height, img2.height)
|
| 577 |
-
combined_img = Image.new("RGB", (total_width, max_height))
|
| 578 |
-
combined_img.paste(img1, (0, 0))
|
| 579 |
-
combined_img.paste(img2, (img1.width, 0))
|
| 580 |
-
st.image(combined_img, caption=f"{pdf_file.name} Pages {i+1}-{i+2}")
|
| 581 |
-
gpt_text = process_image_with_prompt(combined_img, "Extract the electronic text from image")
|
| 582 |
-
combined_text += f"\n## {pdf_file.name} - Pages {i+1}-{i+2}\n\n{gpt_text}\n"
|
| 583 |
-
else:
|
| 584 |
-
pix = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 585 |
-
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 586 |
-
st.image(img, caption=f"{pdf_file.name} Page {i+1}")
|
| 587 |
-
gpt_text = process_image_with_prompt(img, "Extract the electronic text from image")
|
| 588 |
-
combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"
|
| 589 |
-
doc.close()
|
| 590 |
-
except Exception as e:
|
| 591 |
-
st.error(f"Error processing {pdf_file.name}: {str(e)}")
|
| 592 |
-
finally:
|
| 593 |
-
os.remove(temp_pdf_path)
|
| 594 |
-
output_filename = generate_filename("processed_pdf", "md")
|
| 595 |
-
with open(output_filename, "w", encoding="utf-8") as f:
|
| 596 |
-
f.write(combined_text)
|
| 597 |
-
st.success(f"PDF processing complete. MD file saved as {output_filename}")
|
| 598 |
-
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed PDF MD"), unsafe_allow_html=True)
|
| 599 |
-
|
| 600 |
-
# === New Tab: Image Process ===
|
| 601 |
-
with tab_image_process:
|
| 602 |
-
st.header("Image Process")
|
| 603 |
-
st.subheader("Upload Images for GPT-based OCR")
|
| 604 |
-
prompt_img = st.text_input("Enter prompt for image processing", "Extract the electronic text from image", key="img_process_prompt")
|
| 605 |
-
uploaded_images = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader")
|
| 606 |
-
if st.button("Process Uploaded Images", key="process_images"):
|
| 607 |
-
combined_text = ""
|
| 608 |
-
for img_file in uploaded_images:
|
| 609 |
-
try:
|
| 610 |
-
img = Image.open(img_file)
|
| 611 |
-
st.image(img, caption=img_file.name)
|
| 612 |
-
gpt_text = process_image_with_prompt(img, prompt_img)
|
| 613 |
-
combined_text += f"\n## {img_file.name}\n\n{gpt_text}\n"
|
| 614 |
-
except Exception as e:
|
| 615 |
-
st.error(f"Error processing image {img_file.name}: {str(e)}")
|
| 616 |
-
output_filename = generate_filename("processed_image", "md")
|
| 617 |
-
with open(output_filename, "w", encoding="utf-8") as f:
|
| 618 |
-
f.write(combined_text)
|
| 619 |
-
st.success(f"Image processing complete. MD file saved as {output_filename}")
|
| 620 |
-
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed Image MD"), unsafe_allow_html=True)
|
| 621 |
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
st.subheader("
|
| 628 |
-
|
| 629 |
-
for idx, md_file in enumerate(md_files):
|
| 630 |
-
with cols[idx % 2]:
|
| 631 |
-
st.write(md_file)
|
| 632 |
-
if st.button(f"Process {md_file}", key=f"process_md_{md_file}"):
|
| 633 |
-
try:
|
| 634 |
-
with open(md_file, "r", encoding="utf-8") as f:
|
| 635 |
-
content = f.read()
|
| 636 |
-
prompt_md = "Summarize this into markdown outline with emojis and number the topics 1..12"
|
| 637 |
-
messages = [{"role": "user", "content": prompt_md + "\n\n" + content}]
|
| 638 |
-
response = openai.ChatCompletion.create(model="o3-mini-high", messages=messages)
|
| 639 |
-
result_text = response.choices[0].message.content
|
| 640 |
-
st.markdown(result_text)
|
| 641 |
-
output_filename = generate_filename(f"processed_{os.path.splitext(md_file)[0]}", "md")
|
| 642 |
-
with open(output_filename, "w", encoding="utf-8") as f:
|
| 643 |
-
f.write(result_text)
|
| 644 |
-
st.markdown(get_download_link(output_filename, "text/markdown", f"Download {output_filename}"), unsafe_allow_html=True)
|
| 645 |
-
except Exception as e:
|
| 646 |
-
st.error(f"Error processing {md_file}: {str(e)}")
|
| 647 |
-
st.subheader("Batch Processing")
|
| 648 |
-
st.write("Select MD files to combine and process:")
|
| 649 |
-
selected_md = {}
|
| 650 |
for md_file in md_files:
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
else:
|
| 676 |
-
st.warning("No MD files selected.")
|
| 677 |
-
else:
|
| 678 |
-
st.warning("No MD files found.")
|
|
|
|
| 3 |
import glob
|
| 4 |
import base64
|
| 5 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import streamlit as st
|
|
|
|
|
|
|
| 7 |
import fitz
|
| 8 |
import requests
|
| 9 |
from PIL import Image
|
| 10 |
+
import asyncio
|
| 11 |
+
import aiofiles
|
| 12 |
+
from io import BytesIO
|
| 13 |
+
import zipfile
|
| 14 |
+
import random
|
| 15 |
+
import re
|
| 16 |
+
from openai import OpenAI
|
| 17 |
+
import logging
|
| 18 |
|
|
|
|
| 19 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 20 |
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
|
|
|
| 22 |
st.set_page_config(
|
| 23 |
+
page_title="AI Document Processor 🚀",
|
| 24 |
page_icon="🤖",
|
| 25 |
layout="wide",
|
| 26 |
initial_sidebar_state="expanded",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
)
|
| 28 |
|
| 29 |
+
# Session state initialization
|
| 30 |
if 'history' not in st.session_state:
|
| 31 |
st.session_state['history'] = []
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
if 'processing' not in st.session_state:
|
| 33 |
st.session_state['processing'] = {}
|
| 34 |
if 'asset_checkboxes' not in st.session_state:
|
| 35 |
st.session_state['asset_checkboxes'] = {}
|
|
|
|
|
|
|
| 36 |
if 'unique_counter' not in st.session_state:
|
| 37 |
st.session_state['unique_counter'] = 0
|
| 38 |
+
if 'messages' not in st.session_state:
|
| 39 |
+
st.session_state['messages'] = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
# OpenAI setup
|
| 42 |
+
openai_api_key = os.getenv('OPENAI_API_KEY')
|
| 43 |
+
openai_org_id = os.getenv('OPENAI_ORG_ID')
|
| 44 |
+
client = OpenAI(api_key=openai_api_key, organization=openai_org_id)
|
| 45 |
+
GPT_MODEL = "gpt-4o-2024-05-13"
|
| 46 |
+
GPT_MINI_MODEL = "o3-mini-high" # Placeholder, adjust as per actual model name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
def generate_filename(sequence, ext="png"):
|
| 49 |
timestamp = time.strftime("%d%m%Y%H%M%S")
|
| 50 |
return f"{sequence}_{timestamp}.{ext}"
|
|
|
|
| 59 |
b64 = base64.b64encode(data).decode()
|
| 60 |
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>'
|
| 61 |
|
| 62 |
+
def get_gallery_files(file_types=["png", "pdf", "md"]):
|
| 63 |
+
return sorted(list(set([f for ext in file_types for f in glob.glob(f"*.{ext}")])))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
def get_pdf_files():
|
| 66 |
return sorted(glob.glob("*.pdf"))
|
| 67 |
|
| 68 |
+
def get_md_files():
|
| 69 |
+
return sorted(glob.glob("*.md"))
|
| 70 |
+
|
| 71 |
def download_pdf(url, output_path):
|
| 72 |
try:
|
| 73 |
response = requests.get(url, stream=True, timeout=10)
|
|
|
|
| 80 |
logger.error(f"Failed to download {url}: {e}")
|
| 81 |
return False
|
| 82 |
|
| 83 |
+
async def process_pdf_to_images(pdf_path, mode="double"):
|
| 84 |
+
doc = fitz.open(pdf_path)
|
| 85 |
+
output_files = []
|
| 86 |
+
step = 2 if mode == "double" else 1
|
| 87 |
+
for i in range(0, len(doc), step):
|
| 88 |
+
if mode == "double" and i + 1 < len(doc):
|
| 89 |
+
# Combine two pages into one image
|
| 90 |
+
page1 = doc[i]
|
| 91 |
+
page2 = doc[i + 1]
|
| 92 |
+
pix1 = page1.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 93 |
+
pix2 = page2.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 94 |
+
combined_width = pix1.width + pix2.width
|
| 95 |
+
combined_height = max(pix1.height, pix2.height)
|
| 96 |
+
combined_pix = fitz.Pixmap(fitz.csRGB, combined_width, combined_height)
|
| 97 |
+
combined_pix.set_rect(fitz.IRect(0, 0, pix1.width, pix1.height), pix1)
|
| 98 |
+
combined_pix.set_rect(fitz.IRect(pix1.width, 0, combined_width, pix2.height), pix2)
|
| 99 |
+
output_file = generate_filename(f"double_page_{i}", "png")
|
| 100 |
+
combined_pix.save(output_file)
|
| 101 |
+
output_files.append(output_file)
|
| 102 |
+
else:
|
| 103 |
+
page = doc[i]
|
| 104 |
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 105 |
+
output_file = generate_filename(f"page_{i}", "png")
|
| 106 |
pix.save(output_file)
|
| 107 |
output_files.append(output_file)
|
| 108 |
+
doc.close()
|
| 109 |
+
return output_files
|
| 110 |
+
|
| 111 |
+
async def extract_text_from_image(image_path):
|
| 112 |
+
with open(image_path, "rb") as image_file:
|
| 113 |
+
base64_image = base64.b64encode(image_file.read()).decode("utf-8")
|
| 114 |
+
response = client.chat.completions.create(
|
| 115 |
+
model=GPT_MODEL,
|
| 116 |
+
messages=[{"role": "user", "content": [
|
| 117 |
+
{"type": "text", "text": "Extract the electronic text from this image"},
|
| 118 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}]}],
|
| 119 |
+
temperature=0.0
|
| 120 |
+
)
|
| 121 |
+
return response.choices[0].message.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
def update_gallery():
|
| 124 |
all_files = get_gallery_files()
|
| 125 |
if all_files:
|
| 126 |
st.sidebar.subheader("Asset Gallery 📸📖")
|
| 127 |
cols = st.sidebar.columns(2)
|
| 128 |
+
for idx, file in enumerate(all_files[:4]): # Limit to 4 for brevity
|
| 129 |
with cols[idx % 2]:
|
| 130 |
st.session_state['unique_counter'] += 1
|
| 131 |
unique_id = st.session_state['unique_counter']
|
| 132 |
if file.endswith('.png'):
|
| 133 |
st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True)
|
| 134 |
+
elif file.endswith('.pdf'):
|
| 135 |
doc = fitz.open(file)
|
| 136 |
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
|
| 137 |
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 138 |
st.image(img, caption=os.path.basename(file), use_container_width=True)
|
| 139 |
doc.close()
|
| 140 |
+
else: # .md files
|
| 141 |
+
st.write(f"📜 {os.path.basename(file)}")
|
| 142 |
+
st.markdown(get_download_link(file, "application/octet-stream", "Download"), unsafe_allow_html=True)
|
| 143 |
+
|
| 144 |
+
st.title("AI Document Processor 🚀")
|
| 145 |
+
|
| 146 |
+
# Sidebar
|
| 147 |
+
st.sidebar.header("Captured Files 📜")
|
| 148 |
+
if st.sidebar.button("Zap All! 🗑️"):
|
| 149 |
+
for file in get_gallery_files():
|
| 150 |
+
os.remove(file)
|
| 151 |
+
st.session_state['asset_checkboxes'].clear()
|
| 152 |
+
st.sidebar.success("All assets vaporized! 💨")
|
| 153 |
+
st.rerun()
|
| 154 |
update_gallery()
|
| 155 |
|
| 156 |
+
tab1, tab2, tab3 = st.tabs(["PDF Processing 📖", "Image Processing 🖼️", "Markdown Management 📝"])
|
| 157 |
+
|
| 158 |
+
with tab1:
|
| 159 |
+
st.header("PDF Processing 📖")
|
| 160 |
+
pdf_files = st.file_uploader("Upload PDFs", type=["pdf"], accept_multiple_files=True)
|
| 161 |
+
if pdf_files and st.button("Process PDFs"):
|
| 162 |
+
for pdf_file in pdf_files:
|
| 163 |
+
pdf_path = f"uploaded_{pdf_file.name}"
|
| 164 |
+
with open(pdf_path, "wb") as f:
|
| 165 |
+
f.write(pdf_file.getvalue())
|
| 166 |
+
images = asyncio.run(process_pdf_to_images(pdf_path, mode="double"))
|
| 167 |
+
full_text = ""
|
| 168 |
+
for img in images:
|
| 169 |
+
text = asyncio.run(extract_text_from_image(img))
|
| 170 |
+
full_text += f"# Page {images.index(img) + 1}\n\n{text}\n\n"
|
| 171 |
+
md_file = f"{os.path.splitext(pdf_path)[0]}.md"
|
| 172 |
+
with open(md_file, "w") as f:
|
| 173 |
+
f.write(full_text)
|
| 174 |
+
st.image([Image.open(img) for img in images], caption=images, width=300)
|
| 175 |
+
st.markdown(get_download_link(md_file, "text/markdown", "Download Markdown"), unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
update_gallery()
|
| 177 |
|
| 178 |
+
with tab2:
|
| 179 |
+
st.header("Image Processing 🖼️")
|
| 180 |
+
prompt = st.text_area("Enter Prompt for Images", "Extract the electronic text from this image")
|
| 181 |
+
image_files = st.file_uploader("Upload Images", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
|
| 182 |
+
if image_files and st.button("Process Images"):
|
| 183 |
+
full_text = ""
|
| 184 |
+
for img_file in image_files:
|
| 185 |
+
img_path = f"uploaded_{img_file.name}"
|
| 186 |
+
with open(img_path, "wb") as f:
|
| 187 |
+
f.write(img_file.getvalue())
|
| 188 |
+
text = asyncio.run(extract_text_from_image(img_path))
|
| 189 |
+
full_text += f"# {img_file.name}\n\n{text}\n\n"
|
| 190 |
+
st.image(Image.open(img_path), caption=img_file.name, width=300)
|
| 191 |
+
md_file = generate_filename("image_ocr", "md")
|
| 192 |
+
with open(md_file, "w") as f:
|
| 193 |
+
f.write(full_text)
|
| 194 |
+
st.markdown(get_download_link(md_file, "text/markdown", "Download Markdown"), unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
update_gallery()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
+
with tab3:
|
| 198 |
+
st.header("Markdown Management 📝")
|
| 199 |
+
md_files = get_md_files()
|
| 200 |
+
col1, col2 = st.columns(2)
|
| 201 |
+
with col1:
|
| 202 |
+
st.subheader("File Listing")
|
| 203 |
+
selected_files = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
for md_file in md_files:
|
| 205 |
+
if st.checkbox(md_file, key=f"md_{md_file}"):
|
| 206 |
+
selected_files.append(md_file)
|
| 207 |
+
with col2:
|
| 208 |
+
st.subheader("Process Selected Files")
|
| 209 |
+
default_prompt = "Summarize this into markdown outline with emojis and number the topics 1..12"
|
| 210 |
+
prompt = st.text_area("Enter Prompt", default_prompt)
|
| 211 |
+
if st.button("Process with GPT") and selected_files:
|
| 212 |
+
combined_text = ""
|
| 213 |
+
for md_file in selected_files:
|
| 214 |
+
with open(md_file, "r") as f:
|
| 215 |
+
combined_text += f.read() + "\n\n"
|
| 216 |
+
response = client.chat.completions.create(
|
| 217 |
+
model=GPT_MINI_MODEL, # Replace with actual model if different
|
| 218 |
+
messages=[{"role": "user", "content": f"{prompt}\n\n{combined_text}"}],
|
| 219 |
+
temperature=0.0
|
| 220 |
+
)
|
| 221 |
+
output_md = generate_filename("gpt_output", "md")
|
| 222 |
+
with open(output_md, "w") as f:
|
| 223 |
+
f.write(response.choices[0].message.content)
|
| 224 |
+
st.markdown(response.choices[0].message.content)
|
| 225 |
+
st.markdown(get_download_link(output_md, "text/markdown", "Download Output"), unsafe_allow_html=True)
|
| 226 |
+
update_gallery()
|
| 227 |
+
|
| 228 |
+
update_gallery()
|
|
|
|
|
|
|
|
|
|
|
|