Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,7 +13,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
|
|
| 13 |
from diffusers import StableDiffusionPipeline
|
| 14 |
from torch.utils.data import Dataset, DataLoader
|
| 15 |
import csv
|
| 16 |
-
|
| 17 |
import requests
|
| 18 |
from PIL import Image
|
| 19 |
import cv2
|
|
@@ -342,6 +342,77 @@ def download_pdf(url, output_path):
|
|
| 342 |
logger.error(f"Failed to download {url}: {e}")
|
| 343 |
return False
|
| 344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
# Mock Search Tool for RAG
|
| 346 |
def mock_search(query: str) -> str:
|
| 347 |
if "superhero" in query.lower():
|
|
@@ -423,73 +494,6 @@ def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_
|
|
| 423 |
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
|
| 424 |
return round(flight_time, 2)
|
| 425 |
|
| 426 |
-
# Async Processing Functions
|
| 427 |
-
async def process_pdf_snapshot(pdf_path, mode="thumbnail"):
|
| 428 |
-
start_time = time.time()
|
| 429 |
-
status = st.empty()
|
| 430 |
-
status.text(f"Processing PDF Snapshot ({mode})... (0s)")
|
| 431 |
-
try:
|
| 432 |
-
images = convert_from_path(pdf_path, dpi=200)
|
| 433 |
-
output_files = []
|
| 434 |
-
if mode == "thumbnail":
|
| 435 |
-
img = images[0].resize((int(images[0].width * 0.5), int(images[0].height * 0.5)), Image.Resampling.LANCZOS)
|
| 436 |
-
output_file = generate_filename("thumbnail", "png")
|
| 437 |
-
img.save(output_file)
|
| 438 |
-
output_files.append(output_file)
|
| 439 |
-
elif mode == "twopage":
|
| 440 |
-
for i in range(min(2, len(images))):
|
| 441 |
-
output_file = generate_filename(f"twopage_{i}", "png")
|
| 442 |
-
images[i].save(output_file)
|
| 443 |
-
output_files.append(output_file)
|
| 444 |
-
elapsed = int(time.time() - start_time)
|
| 445 |
-
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
|
| 446 |
-
update_gallery()
|
| 447 |
-
return output_files
|
| 448 |
-
except Exception as e:
|
| 449 |
-
status.error(f"Failed to process PDF: {str(e)}. Install poppler-utils (e.g., 'sudo apt-get install poppler-utils' on Ubuntu) and ensure it's in PATH.")
|
| 450 |
-
return []
|
| 451 |
-
|
| 452 |
-
async def process_ocr(image, output_file):
|
| 453 |
-
start_time = time.time()
|
| 454 |
-
status = st.empty()
|
| 455 |
-
status.text("Processing GOT-OCR2_0... (0s)")
|
| 456 |
-
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
|
| 457 |
-
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
| 458 |
-
result = model.chat(tokenizer, image, ocr_type='ocr')
|
| 459 |
-
elapsed = int(time.time() - start_time)
|
| 460 |
-
status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
|
| 461 |
-
async with aiofiles.open(output_file, "w") as f:
|
| 462 |
-
await f.write(result)
|
| 463 |
-
update_gallery()
|
| 464 |
-
return result
|
| 465 |
-
|
| 466 |
-
async def process_image_gen(prompt, output_file):
|
| 467 |
-
start_time = time.time()
|
| 468 |
-
status = st.empty()
|
| 469 |
-
status.text("Processing Image Gen... (0s)")
|
| 470 |
-
pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
|
| 471 |
-
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
|
| 472 |
-
elapsed = int(time.time() - start_time)
|
| 473 |
-
status.text(f"Image Gen completed in {elapsed}s!")
|
| 474 |
-
gen_image.save(output_file)
|
| 475 |
-
update_gallery()
|
| 476 |
-
return gen_image
|
| 477 |
-
|
| 478 |
-
async def process_custom_diffusion(images, output_file, model_name):
|
| 479 |
-
start_time = time.time()
|
| 480 |
-
status = st.empty()
|
| 481 |
-
status.text(f"Training {model_name}... (0s)")
|
| 482 |
-
unet = TinyUNet()
|
| 483 |
-
diffusion = TinyDiffusion(unet)
|
| 484 |
-
diffusion.train(images)
|
| 485 |
-
gen_image = diffusion.generate()
|
| 486 |
-
upscaled_image = diffusion.upscale(gen_image, scale_factor=2)
|
| 487 |
-
elapsed = int(time.time() - start_time)
|
| 488 |
-
status.text(f"{model_name} completed in {elapsed}s!")
|
| 489 |
-
upscaled_image.save(output_file)
|
| 490 |
-
update_gallery()
|
| 491 |
-
return upscaled_image
|
| 492 |
-
|
| 493 |
# Main App
|
| 494 |
st.title("AI Vision & SFT Titans 🚀")
|
| 495 |
|
|
|
|
| 13 |
from diffusers import StableDiffusionPipeline
|
| 14 |
from torch.utils.data import Dataset, DataLoader
|
| 15 |
import csv
|
| 16 |
+
import fitz # PyMuPDF, pure Python library
|
| 17 |
import requests
|
| 18 |
from PIL import Image
|
| 19 |
import cv2
|
|
|
|
| 342 |
logger.error(f"Failed to download {url}: {e}")
|
| 343 |
return False
|
| 344 |
|
| 345 |
+
# Async Processing Functions
|
| 346 |
+
async def process_pdf_snapshot(pdf_path, mode="thumbnail"):
|
| 347 |
+
start_time = time.time()
|
| 348 |
+
status = st.empty()
|
| 349 |
+
status.text(f"Processing PDF Snapshot ({mode})... (0s)")
|
| 350 |
+
try:
|
| 351 |
+
doc = fitz.open(pdf_path)
|
| 352 |
+
output_files = []
|
| 353 |
+
if mode == "thumbnail":
|
| 354 |
+
page = doc[0]
|
| 355 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) # 50% scale
|
| 356 |
+
output_file = generate_filename("thumbnail", "png")
|
| 357 |
+
pix.save(output_file)
|
| 358 |
+
output_files.append(output_file)
|
| 359 |
+
elif mode == "twopage":
|
| 360 |
+
for i in range(min(2, len(doc))):
|
| 361 |
+
page = doc[i]
|
| 362 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(1.0, 1.0)) # Full scale
|
| 363 |
+
output_file = generate_filename(f"twopage_{i}", "png")
|
| 364 |
+
pix.save(output_file)
|
| 365 |
+
output_files.append(output_file)
|
| 366 |
+
doc.close()
|
| 367 |
+
elapsed = int(time.time() - start_time)
|
| 368 |
+
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
|
| 369 |
+
update_gallery()
|
| 370 |
+
return output_files
|
| 371 |
+
except Exception as e:
|
| 372 |
+
status.error(f"Failed to process PDF: {str(e)}")
|
| 373 |
+
return []
|
| 374 |
+
|
| 375 |
+
async def process_ocr(image, output_file):
|
| 376 |
+
start_time = time.time()
|
| 377 |
+
status = st.empty()
|
| 378 |
+
status.text("Processing GOT-OCR2_0... (0s)")
|
| 379 |
+
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
|
| 380 |
+
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
| 381 |
+
result = model.chat(tokenizer, image, ocr_type='ocr')
|
| 382 |
+
elapsed = int(time.time() - start_time)
|
| 383 |
+
status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
|
| 384 |
+
async with aiofiles.open(output_file, "w") as f:
|
| 385 |
+
await f.write(result)
|
| 386 |
+
update_gallery()
|
| 387 |
+
return result
|
| 388 |
+
|
| 389 |
+
async def process_image_gen(prompt, output_file):
|
| 390 |
+
start_time = time.time()
|
| 391 |
+
status = st.empty()
|
| 392 |
+
status.text("Processing Image Gen... (0s)")
|
| 393 |
+
pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
|
| 394 |
+
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
|
| 395 |
+
elapsed = int(time.time() - start_time)
|
| 396 |
+
status.text(f"Image Gen completed in {elapsed}s!")
|
| 397 |
+
gen_image.save(output_file)
|
| 398 |
+
update_gallery()
|
| 399 |
+
return gen_image
|
| 400 |
+
|
| 401 |
+
async def process_custom_diffusion(images, output_file, model_name):
|
| 402 |
+
start_time = time.time()
|
| 403 |
+
status = st.empty()
|
| 404 |
+
status.text(f"Training {model_name}... (0s)")
|
| 405 |
+
unet = TinyUNet()
|
| 406 |
+
diffusion = TinyDiffusion(unet)
|
| 407 |
+
diffusion.train(images)
|
| 408 |
+
gen_image = diffusion.generate()
|
| 409 |
+
upscaled_image = diffusion.upscale(gen_image, scale_factor=2)
|
| 410 |
+
elapsed = int(time.time() - start_time)
|
| 411 |
+
status.text(f"{model_name} completed in {elapsed}s!")
|
| 412 |
+
upscaled_image.save(output_file)
|
| 413 |
+
update_gallery()
|
| 414 |
+
return upscaled_image
|
| 415 |
+
|
| 416 |
# Mock Search Tool for RAG
|
| 417 |
def mock_search(query: str) -> str:
|
| 418 |
if "superhero" in query.lower():
|
|
|
|
| 494 |
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
|
| 495 |
return round(flight_time, 2)
|
| 496 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 497 |
# Main App
|
| 498 |
st.title("AI Vision & SFT Titans 🚀")
|
| 499 |
|