Spaces:
Sleeping
Sleeping
| #!/usr/bin/env python3 | |
| import os | |
| import base64 | |
| import streamlit as st | |
| import pandas as pd | |
| import csv | |
| import time | |
| from dataclasses import dataclass | |
| from PIL import Image | |
| from datetime import datetime | |
| import pytz | |
| from streamlit_webrtc import webrtc_streamer, VideoTransformerBase | |
| import av | |
| # Minimal initial imports to reduce startup delay | |
| st.set_page_config(page_title="SFT Tiny Titans 🚀", page_icon="🤖", layout="wide", initial_sidebar_state="expanded") | |
| # Model Configurations | |
| class ModelConfig: | |
| name: str | |
| base_model: str | |
| model_type: str = "causal_lm" | |
| def model_path(self): | |
| return f"models/{self.name}" | |
| class DiffusionConfig: | |
| name: str | |
| base_model: str | |
| def model_path(self): | |
| return f"diffusion_models/{self.name}" | |
| # Lazy-loaded Builders | |
| class ModelBuilder: | |
| def __init__(self): | |
| self.config = None | |
| self.model = None | |
| self.tokenizer = None | |
| def load_model(self, model_path: str, config: ModelConfig): | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| self.model = AutoModelForCausalLM.from_pretrained(model_path) | |
| self.tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| if self.tokenizer.pad_token is None: | |
| self.tokenizer.pad_token = self.tokenizer.eos_token | |
| self.config = config | |
| self.model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) | |
| def evaluate(self, prompt: str): | |
| import torch | |
| self.model.eval() | |
| with torch.no_grad(): | |
| inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device) | |
| outputs = self.model.generate(**inputs, max_new_tokens=50) | |
| return self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| class DiffusionBuilder: | |
| def __init__(self): | |
| self.config = None | |
| self.pipeline = None | |
| def load_model(self, model_path: str, config: DiffusionConfig): | |
| from diffusers import StableDiffusionPipeline | |
| import torch | |
| self.pipeline = StableDiffusionPipeline.from_pretrained(model_path) | |
| self.pipeline.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) | |
| self.config = config | |
| def generate(self, prompt: str): | |
| return self.pipeline(prompt, num_inference_steps=20).images[0] | |
| # Utilities | |
| def get_download_link(file_path, mime_type="text/plain", label="Download"): | |
| with open(file_path, 'rb') as f: | |
| data = f.read() | |
| b64 = base64.b64encode(data).decode() | |
| return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>' | |
| def generate_filename(text_line): | |
| central = pytz.timezone('US/Central') | |
| timestamp = datetime.now(central).strftime("%Y%m%d_%I%M%S_%p") | |
| safe_text = ''.join(c if c.isalnum() else '_' for c in text_line[:50]) | |
| return f"{timestamp}_{safe_text}.png" | |
| def get_gallery_files(file_types): | |
| return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")]) | |
| # Video Transformer for WebRTC | |
| class VideoSnapshot(VideoTransformerBase): | |
| def __init__(self): | |
| self.snapshot = None | |
| def transform(self, frame): | |
| img = frame.to_ndarray(format="bgr24") | |
| return img | |
| def take_snapshot(self): | |
| if self.snapshot is not None: | |
| return Image.fromarray(self.snapshot) | |
| # Main App | |
| st.title("SFT Tiny Titans 🚀 (Lean & Mean!)") | |
| # Sidebar Galleries | |
| st.sidebar.header("Media Gallery 🎨") | |
| for gallery_type, file_types, emoji in [ | |
| ("Images 📸", ["png", "jpg", "jpeg"], "🖼️"), | |
| ("Videos 🎥", ["mp4"], "🎬") | |
| ]: | |
| st.sidebar.subheader(f"{gallery_type} {emoji}") | |
| files = get_gallery_files(file_types) | |
| if files: | |
| cols = st.sidebar.columns(3) | |
| for idx, file in enumerate(files[:6]): | |
| with cols[idx % 3]: | |
| if "Images" in gallery_type: | |
| st.image(Image.open(file), caption=file.split('/')[-1], use_column_width=True) | |
| elif "Videos" in gallery_type: | |
| st.video(file) | |
| # Sidebar Model Management | |
| st.sidebar.subheader("Model Hub 🗂️") | |
| model_type = st.sidebar.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"]) | |
| model_options = ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if "NLP" in model_type else ["stabilityai/stable-diffusion-2-1", "CompVis/stable-diffusion-v1-4"] | |
| selected_model = st.sidebar.selectbox("Select Model", ["None"] + model_options) | |
| if selected_model != "None" and st.sidebar.button("Load Model 📂"): | |
| builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder() | |
| config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=selected_model) | |
| with st.spinner("Loading... ⏳"): | |
| builder.load_model(selected_model, config) | |
| st.session_state['builder'] = builder | |
| st.session_state['model_loaded'] = True | |
| # Tabs | |
| tab1, tab2, tab3, tab4 = st.tabs([ | |
| "Build Titan 🌱", | |
| "Fine-Tune Titans 🔧", | |
| "Test Titans 🧪", | |
| "Camera Snap 📷" | |
| ]) | |
| with tab1: | |
| st.header("Build Titan 🌱 (Start Small!)") | |
| model_type = st.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"], key="build_type") | |
| base_model = st.selectbox("Select Model", model_options, key="build_model") | |
| if st.button("Download Model ⬇️"): | |
| config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=base_model) | |
| builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder() | |
| with st.spinner("Fetching... ⏳"): | |
| builder.load_model(base_model, config) | |
| st.session_state['builder'] = builder | |
| st.session_state['model_loaded'] = True | |
| st.success("Titan ready! 🎉") | |
| with tab2: | |
| st.header("Fine-Tune Titans 🔧 (Sharpen Up!)") | |
| if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): | |
| st.warning("Load a Titan first! ⚠️") | |
| else: | |
| if isinstance(st.session_state['builder'], ModelBuilder): | |
| st.subheader("NLP Tune 🧠") | |
| uploaded_csv = st.file_uploader("Upload CSV", type="csv", key="nlp_csv") | |
| if uploaded_csv and st.button("Tune NLP 🔄"): | |
| from torch.utils.data import Dataset, DataLoader | |
| import torch | |
| class SFTDataset(Dataset): | |
| def __init__(self, data, tokenizer): | |
| self.data = data | |
| self.tokenizer = tokenizer | |
| def __len__(self): | |
| return len(self.data) | |
| def __getitem__(self, idx): | |
| prompt = self.data[idx]["prompt"] | |
| response = self.data[idx]["response"] | |
| inputs = self.tokenizer(f"{prompt} {response}", return_tensors="pt", padding="max_length", max_length=128, truncation=True) | |
| labels = inputs["input_ids"].clone() | |
| labels[0, :len(self.tokenizer(prompt)["input_ids"][0])] = -100 | |
| return {"input_ids": inputs["input_ids"][0], "attention_mask": inputs["attention_mask"][0], "labels": labels[0]} | |
| data = [] | |
| with open("temp.csv", "wb") as f: | |
| f.write(uploaded_csv.read()) | |
| with open("temp.csv", "r") as f: | |
| reader = csv.DictReader(f) | |
| for row in reader: | |
| data.append({"prompt": row["prompt"], "response": row["response"]}) | |
| dataset = SFTDataset(data, st.session_state['builder'].tokenizer) | |
| dataloader = DataLoader(dataset, batch_size=2) | |
| optimizer = torch.optim.AdamW(st.session_state['builder'].model.parameters(), lr=2e-5) | |
| st.session_state['builder'].model.train() | |
| for _ in range(3): # Simplified epochs | |
| for batch in dataloader: | |
| optimizer.zero_grad() | |
| outputs = st.session_state['builder'].model(**{k: v.to(st.session_state['builder'].model.device) for k, v in batch.items()}) | |
| outputs.loss.backward() | |
| optimizer.step() | |
| st.success("NLP tuned! 🎉") | |
| elif isinstance(st.session_state['builder'], DiffusionBuilder): | |
| st.subheader("CV Tune 🎨") | |
| uploaded_files = st.file_uploader("Upload Images", type=["png", "jpg"], accept_multiple_files=True, key="cv_upload") | |
| text_input = st.text_area("Text (one per image)", "Bat Neon\nIron Glow", key="cv_text") | |
| if uploaded_files and st.button("Tune CV 🔄"): | |
| import torch | |
| images = [Image.open(f).convert("RGB") for f in uploaded_files] | |
| texts = text_input.splitlines()[:len(images)] | |
| optimizer = torch.optim.AdamW(st.session_state['builder'].pipeline.unet.parameters(), lr=1e-5) | |
| st.session_state['builder'].pipeline.unet.train() | |
| for _ in range(3): # Simplified epochs | |
| for img, text in zip(images, texts): | |
| optimizer.zero_grad() | |
| latents = st.session_state['builder'].pipeline.vae.encode(torch.tensor(np.array(img)).permute(2, 0, 1).unsqueeze(0).float().to(st.session_state['builder'].pipeline.device)).latent_dist.sample() | |
| noise = torch.randn_like(latents) | |
| timesteps = torch.randint(0, 1000, (1,), device=latents.device) | |
| noisy_latents = st.session_state['builder'].pipeline.scheduler.add_noise(latents, noise, timesteps) | |
| text_emb = st.session_state['builder'].pipeline.text_encoder(st.session_state['builder'].pipeline.tokenizer(text, return_tensors="pt").input_ids.to(st.session_state['builder'].pipeline.device))[0] | |
| pred_noise = st.session_state['builder'].pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_emb).sample | |
| loss = torch.nn.functional.mse_loss(pred_noise, noise) | |
| loss.backward() | |
| optimizer.step() | |
| for img, text in zip(images, texts): | |
| filename = generate_filename(text) | |
| img.save(filename) | |
| st.success("CV tuned! 🎉") | |
| with tab3: | |
| st.header("Test Titans 🧪 (Showtime!)") | |
| if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): | |
| st.warning("Load a Titan first! ⚠️") | |
| else: | |
| if isinstance(st.session_state['builder'], ModelBuilder): | |
| st.subheader("NLP Test 🧠") | |
| prompt = st.text_area("Prompt", "What’s a superhero party?", key="nlp_test") | |
| if st.button("Test NLP ▶️"): | |
| result = st.session_state['builder'].evaluate(prompt) | |
| st.write(f"**Answer**: {result}") | |
| elif isinstance(st.session_state['builder'], DiffusionBuilder): | |
| st.subheader("CV Test 🎨") | |
| prompt = st.text_area("Prompt", "Neon Batman", key="cv_test") | |
| if st.button("Test CV ▶️"): | |
| with st.spinner("Generating... ⏳"): | |
| img = st.session_state['builder'].generate(prompt) | |
| st.image(img, caption="Generated Art") | |
| with tab4: | |
| st.header("Camera Snap 📷 (Live Action!)") | |
| ctx = webrtc_streamer(key="camera", video_transformer_factory=VideoSnapshot, rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}) | |
| if ctx.video_transformer: | |
| snapshot_text = st.text_input("Snapshot Text", "Live Snap") | |
| if st.button("Snap It! 📸"): | |
| snapshot = ctx.video_transformer.take_snapshot() | |
| if snapshot: | |
| filename = generate_filename(snapshot_text) | |
| snapshot.save(filename) | |
| st.image(snapshot, caption=filename) | |
| st.success("Snapped! 🎉") | |
| # Demo Dataset | |
| st.subheader("Demo CV Dataset 🎨") | |
| demo_texts = ["Bat Neon", "Iron Glow", "Thor Spark"] | |
| demo_images = [generate_filename(t) for t in demo_texts] | |
| for img, text in zip(demo_images, demo_texts): | |
| if not os.path.exists(img): | |
| Image.new("RGB", (100, 100)).save(img) | |
| st.code("\n".join([f"{i+1}. {t} -> {img}" for i, (t, img) in enumerate(zip(demo_texts, demo_images))]), language="text") | |
| if st.button("Download Demo CSV 📝"): | |
| csv_path = f"demo_cv_{int(time.time())}.csv" | |
| with open(csv_path, "w", newline="") as f: | |
| writer = csv.writer(f) | |
| writer.writerow(["image", "text"]) | |
| for img, text in zip(demo_images, demo_texts): | |
| writer.writerow([img, text]) | |
| st.markdown(get_download_link(csv_path, "text/csv", "Download Demo CSV"), unsafe_allow_html=True) |