kadirnar commited on
Commit
cdb8b5c
Β·
1 Parent(s): 6a0b292

add inf codes

Browse files
Files changed (2) hide show
  1. app.py +288 -4
  2. requirements.txt +6 -0
app.py CHANGED
@@ -1,7 +1,291 @@
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
1
+
2
+ import spaces
3
+ from snac import SNAC
4
+ import torch
5
  import gradio as gr
6
+ from transformers import AutoModelForCausalLM, AutoTokenizer
7
+ from huggingface_hub import snapshot_download
8
+ from dotenv import load_dotenv
9
+ load_dotenv()
10
+
11
+ # Check if CUDA is available
12
+ device = "cuda" if torch.cuda.is_available() else "cpu"
13
+
14
+ print("Loading SNAC model...")
15
+ snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
16
+ snac_model = snac_model.to(device)
17
+
18
+ # Available models - LFM2 models
19
+ MODELS = {
20
+ "Jenny Voice": "Vyvo/VyvoTTS-LFM2-350M-Jenny",
21
+ }
22
+
23
+ # Pre-load all models
24
+ print("Loading models...")
25
+ models = {}
26
+ tokenizers = {}
27
+
28
+ for lang, model_name in MODELS.items():
29
+ print(f"Loading {lang} model: {model_name}")
30
+ models[lang] = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
31
+ models[lang].to(device)
32
+ tokenizers[lang] = AutoTokenizer.from_pretrained(model_name)
33
+
34
+ print("All models loaded successfully!")
35
+
36
+ # LFM2 Special Tokens Configuration
37
+ TOKENIZER_LENGTH = 64400
38
+ START_OF_TEXT = 1
39
+ END_OF_TEXT = 7
40
+ START_OF_SPEECH = TOKENIZER_LENGTH + 1
41
+ END_OF_SPEECH = TOKENIZER_LENGTH + 2
42
+ START_OF_HUMAN = TOKENIZER_LENGTH + 3
43
+ END_OF_HUMAN = TOKENIZER_LENGTH + 4
44
+ START_OF_AI = TOKENIZER_LENGTH + 5
45
+ END_OF_AI = TOKENIZER_LENGTH + 6
46
+ PAD_TOKEN = TOKENIZER_LENGTH + 7
47
+ AUDIO_TOKENS_START = TOKENIZER_LENGTH + 10
48
+
49
+ # Process text prompt for LFM2
50
+ def process_prompt(prompt, tokenizer, device):
51
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids
52
+
53
+ start_token = torch.tensor([[START_OF_HUMAN]], dtype=torch.int64)
54
+ end_tokens = torch.tensor([[END_OF_TEXT, END_OF_HUMAN]], dtype=torch.int64)
55
+
56
+ modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
57
+
58
+ # No padding needed for single input
59
+ attention_mask = torch.ones_like(modified_input_ids)
60
+
61
+ return modified_input_ids.to(device), attention_mask.to(device)
62
+
63
+ # Parse output tokens to audio for LFM2
64
+ def parse_output(generated_ids):
65
+ token_to_find = START_OF_SPEECH
66
+ token_to_remove = END_OF_SPEECH
67
+
68
+ token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
69
+
70
+ if len(token_indices[1]) > 0:
71
+ last_occurrence_idx = token_indices[1][-1].item()
72
+ cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
73
+ else:
74
+ cropped_tensor = generated_ids
75
+
76
+ processed_rows = []
77
+ for row in cropped_tensor:
78
+ masked_row = row[row != token_to_remove]
79
+ processed_rows.append(masked_row)
80
+
81
+ code_lists = []
82
+ for row in processed_rows:
83
+ row_length = row.size(0)
84
+ new_length = (row_length // 7) * 7
85
+ trimmed_row = row[:new_length]
86
+ trimmed_row = [t - AUDIO_TOKENS_START for t in trimmed_row]
87
+ code_lists.append(trimmed_row)
88
+
89
+ return code_lists[0] # Return just the first one for single sample
90
+
91
+ # Redistribute codes for audio generation
92
+ def redistribute_codes(code_list, snac_model):
93
+ device = next(snac_model.parameters()).device # Get the device of SNAC model
94
+
95
+ layer_1 = []
96
+ layer_2 = []
97
+ layer_3 = []
98
+ for i in range((len(code_list)+1)//7):
99
+ layer_1.append(code_list[7*i])
100
+ layer_2.append(code_list[7*i+1]-4096)
101
+ layer_3.append(code_list[7*i+2]-(2*4096))
102
+ layer_3.append(code_list[7*i+3]-(3*4096))
103
+ layer_2.append(code_list[7*i+4]-(4*4096))
104
+ layer_3.append(code_list[7*i+5]-(5*4096))
105
+ layer_3.append(code_list[7*i+6]-(6*4096))
106
+
107
+ # Move tensors to the same device as the SNAC model
108
+ codes = [
109
+ torch.tensor(layer_1, device=device).unsqueeze(0),
110
+ torch.tensor(layer_2, device=device).unsqueeze(0),
111
+ torch.tensor(layer_3, device=device).unsqueeze(0)
112
+ ]
113
+
114
+ audio_hat = snac_model.decode(codes)
115
+ return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array
116
+
117
+ # Main generation function
118
+ @spaces.GPU()
119
+ def generate_speech(text, model_choice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
120
+ if not text.strip():
121
+ return None
122
+
123
+ try:
124
+ progress(0.1, "πŸ”„ Processing text...")
125
+ model = models[model_choice]
126
+ tokenizer = tokenizers[model_choice]
127
+
128
+ # Voice parameter is always None for LFM2 models
129
+ input_ids, attention_mask = process_prompt(text, tokenizer, device)
130
+
131
+ progress(0.3, "🎡 Generating speech tokens...")
132
+ with torch.no_grad():
133
+ generated_ids = model.generate(
134
+ input_ids=input_ids,
135
+ attention_mask=attention_mask,
136
+ max_new_tokens=max_new_tokens,
137
+ do_sample=True,
138
+ temperature=temperature,
139
+ top_p=top_p,
140
+ repetition_penalty=repetition_penalty,
141
+ num_return_sequences=1,
142
+ eos_token_id=END_OF_SPEECH,
143
+ )
144
+
145
+ progress(0.6, "πŸ”§ Processing speech tokens...")
146
+ code_list = parse_output(generated_ids)
147
+
148
+ progress(0.8, "🎧 Converting to audio...")
149
+ audio_samples = redistribute_codes(code_list, snac_model)
150
+
151
+ progress(1.0, "βœ… Completed!")
152
+ return (24000, audio_samples)
153
+ except Exception as e:
154
+ print(f"Error generating speech: {e}")
155
+ return None
156
+
157
+ # Example texts
158
+ EXAMPLE_TEXTS = [
159
+ "Hello! I am a speech system. I can read your text with a natural voice.",
160
+ "Today is a beautiful day. The weather is perfect for a walk.",
161
+ "The sun rises from the east and sets in the west. This is a rule of nature.",
162
+ "Technology makes our lives easier every day."
163
+ ]
164
 
165
+ # Create modern Gradio interface using built-in theme
166
+ with gr.Blocks(title="🎡 Modern Text-to-Speech", theme=gr.themes.Soft(), css="""
167
+ .gradio-textbox textarea { background-color: #6b7280 !important; color: white !important; }
168
+ .gradio-audio { background-color: #6b7280 !important; }
169
+ """) as demo:
170
+ # Header section
171
+ gr.Markdown("""
172
+ # 🎡 VyvoTTS
173
+ ### πŸ”— [Github](https://github.com/Vyvo-Labs/VyvoTTS) | πŸ€— [HF Model](https://huggingface.co/Vyvo/VyvoTTS-LFM2-350M-Jenny)
174
+ """)
175
+
176
+ gr.Markdown("""
177
+ VyvoTTS is a text-to-speech model by Vyvo team using LFM2 architecture, fine-tuned on reach-vb/jenny_tts_dataset.
178
+ Better datasets can achieve higher quality results.
179
+
180
+ **Roadmap:**
181
+ - [ ] Transformers.js support
182
+ - [ ] Pretrained model release
183
+ - [ ] vLLM support
184
+ - [x] Training and inference code release
185
+ """)
186
+
187
+ with gr.Row():
188
+ with gr.Column(scale=2):
189
+ # Text input section
190
+ text_input = gr.Textbox(
191
+ label="πŸ“ Text Input",
192
+ placeholder="Enter the text you want to convert to speech...",
193
+ lines=6,
194
+ max_lines=10
195
+ )
196
+
197
+ # Voice model selection (hidden since only Jenny is available)
198
+ model_choice = gr.Radio(
199
+ choices=list(MODELS.keys()),
200
+ value="Jenny Voice",
201
+ label="🎀 Voice Model",
202
+ visible=False # Hide since only one option
203
+ )
204
+
205
+ # Advanced settings
206
+ with gr.Accordion("βš™οΈ Advanced Settings", open=False):
207
+ temperature = gr.Slider(
208
+ minimum=0.1, maximum=1.5, value=0.6, step=0.05,
209
+ label="🌑️ Temperature",
210
+ info="Higher values create more expressive but less stable speech"
211
+ )
212
+ top_p = gr.Slider(
213
+ minimum=0.1, maximum=1.0, value=0.95, step=0.05,
214
+ label="🎯 Top P",
215
+ info="Nucleus sampling threshold value"
216
+ )
217
+ repetition_penalty = gr.Slider(
218
+ minimum=1.0, maximum=2.0, value=1.1, step=0.05,
219
+ label="πŸ”„ Repetition Penalty",
220
+ info="Higher values discourage repetitive patterns"
221
+ )
222
+ max_new_tokens = gr.Slider(
223
+ minimum=100, maximum=2000, value=1200, step=100,
224
+ label="πŸ“ Maximum Length",
225
+ info="Maximum length of generated audio (in tokens)"
226
+ )
227
+
228
+ # Action buttons
229
+ with gr.Row():
230
+ submit_btn = gr.Button("🎡 Generate Speech", variant="primary", size="lg")
231
+ clear_btn = gr.Button("πŸ—‘οΈ Clear", size="lg")
232
+
233
+ with gr.Column(scale=1):
234
+ # Output section
235
+ audio_output = gr.Audio(
236
+ label="🎧 Generated Audio",
237
+ type="numpy",
238
+ interactive=False
239
+ )
240
+
241
+ # Example texts at the bottom
242
+ with gr.Row():
243
+ example_1_btn = gr.Button(
244
+ EXAMPLE_TEXTS[0],
245
+ size="sm",
246
+ elem_classes="example-button"
247
+ )
248
+ example_2_btn = gr.Button(
249
+ EXAMPLE_TEXTS[1],
250
+ size="sm",
251
+ elem_classes="example-button"
252
+ )
253
+
254
+ with gr.Row():
255
+ example_3_btn = gr.Button(
256
+ EXAMPLE_TEXTS[2],
257
+ size="sm",
258
+ elem_classes="example-button"
259
+ )
260
+ example_4_btn = gr.Button(
261
+ EXAMPLE_TEXTS[3],
262
+ size="sm",
263
+ elem_classes="example-button"
264
+ )
265
+
266
+ # Set up example button events
267
+ example_1_btn.click(fn=lambda: EXAMPLE_TEXTS[0], outputs=text_input)
268
+ example_2_btn.click(fn=lambda: EXAMPLE_TEXTS[1], outputs=text_input)
269
+ example_3_btn.click(fn=lambda: EXAMPLE_TEXTS[2], outputs=text_input)
270
+ example_4_btn.click(fn=lambda: EXAMPLE_TEXTS[3], outputs=text_input)
271
+
272
+ # Set up event handlers
273
+ submit_btn.click(
274
+ fn=generate_speech,
275
+ inputs=[text_input, model_choice, temperature, top_p, repetition_penalty, max_new_tokens],
276
+ outputs=audio_output,
277
+ show_progress=True
278
+ )
279
+
280
+ def clear_interface():
281
+ return "", None
282
+
283
+ clear_btn.click(
284
+ fn=clear_interface,
285
+ inputs=[],
286
+ outputs=[text_input, audio_output]
287
+ )
288
 
289
+ # Launch the app
290
+ if __name__ == "__main__":
291
+ demo.queue().launch(share=False, ssr_mode=False)
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ snac
2
+ python-dotenv
3
+ transformers
4
+ torch
5
+ spaces
6
+ accelerate