import argparse import os from ..rag_pipeline import get_embeddings, rerank from ..utils import load_local from ..rag_pipeline import vretrieve def main(args): embed_model = get_embeddings(args.embed_model_name) vectorstore, docs = load_local(args.vectorstore_dir, embed_model) retrieve_results = vretrieve(args.query, vectorstore, docs, args.retriever_k, args.metric, args.threshold) retrieve_results = rerank(retrieve_results) print(retrieve_results) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--query", type=str, required=False, default="What are the applications of beta blockers in the treatment of hypertension?") # Vectorstore params parser.add_argument("--vectorstore_dir", type=str, required=False, default="notebook/An/master/knowledge/vectorstore_full") # Model params parser.add_argument("--embed_model_name", type=str, default="alibaba-nlp/gte-multilingual-base") # Vectorstore retriever params parser.add_argument("--vectorstore", type=str, choices=["faiss", "chroma"], default="faiss") parser.add_argument("--metric", type=str, choices=["cosine", "mmr", "bm25"], default="cosine") parser.add_argument("--retriever_k", type=int, default=4, help="Number of documents to retrieve") parser.add_argument("--threshold", type=float, default=0.7, help="Threshold for cosine similarity") parser.add_argument("--reranker_model_name", type=str, default=None) parser.add_argument("--reranker_k", type=int, default=20, help="Number of documents to rerank") args = parser.parse_args() main(args)