Spaces:
Sleeping
Sleeping
Commit
·
4f93011
1
Parent(s):
fdba767
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
from transformers import AutoTokenizer, AutoModel
|
| 7 |
+
import faiss
|
| 8 |
+
|
| 9 |
+
model_name = "cointegrated/rubert-tiny2"
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 11 |
+
model = AutoModel.from_pretrained(model_name)
|
| 12 |
+
|
| 13 |
+
df = pd.read_csv('final_data.csv')
|
| 14 |
+
|
| 15 |
+
MAX_LEN = 300
|
| 16 |
+
|
| 17 |
+
def embed_bert_cls(text, model=model, tokenizer=tokenizer):
|
| 18 |
+
t = tokenizer(text,
|
| 19 |
+
padding=True,
|
| 20 |
+
truncation=True,
|
| 21 |
+
return_tensors='pt',
|
| 22 |
+
max_length=MAX_LEN)
|
| 23 |
+
with torch.no_grad():
|
| 24 |
+
model_output = model(**{k: v.to(model.device) for k, v in t.items()})
|
| 25 |
+
embeddings = model_output.last_hidden_state[:, 0, :]
|
| 26 |
+
embeddings = torch.nn.functional.normalize(embeddings)
|
| 27 |
+
return embeddings[0].cpu().squeeze()
|
| 28 |
+
|
| 29 |
+
embeddings = np.loadtxt('embeddings.txt')
|
| 30 |
+
embeddings_tensor = [torch.tensor(embedding) for embedding in embeddings]
|
| 31 |
+
|
| 32 |
+
# Создание индекса Faiss
|
| 33 |
+
embeddings_matrix = np.stack(embeddings)
|
| 34 |
+
index = faiss.IndexFlatIP(embeddings_matrix.shape[1])
|
| 35 |
+
index.add(embeddings_matrix)
|
| 36 |
+
|
| 37 |
+
st.title('Приложение для рекомендации книг')
|
| 38 |
+
|
| 39 |
+
text = st.text_input('Введите запрос:')
|
| 40 |
+
num_results = st.number_input('Введите количество рекомендаций:', min_value=1, max_value=50, value=3)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# Add a button to trigger the recommendation process
|
| 44 |
+
recommend_button = st.button('Получить рекомендации')
|
| 45 |
+
|
| 46 |
+
if text and recommend_button: # Check if the user entered text and clicked the button
|
| 47 |
+
|
| 48 |
+
# Встраивание запроса и поиск ближайших векторов с использованием Faiss
|
| 49 |
+
query_embedding = embed_bert_cls(text)
|
| 50 |
+
query_embedding = query_embedding.numpy().astype('float32')
|
| 51 |
+
_, indices = index.search(np.expand_dims(query_embedding, axis=0), num_results)
|
| 52 |
+
|
| 53 |
+
st.subheader('Топ рекомендуемых книг:')
|
| 54 |
+
for i in indices[0]:
|
| 55 |
+
recommended_embedding = embeddings_tensor[i].numpy() # Вектор рекомендованной книги
|
| 56 |
+
similarity = np.dot(query_embedding, recommended_embedding) # Косинусное сходство
|
| 57 |
+
similarity_percent = similarity * 100
|
| 58 |
+
|
| 59 |
+
col1, col2 = st.columns([1, 3])
|
| 60 |
+
|
| 61 |
+
with col1:
|
| 62 |
+
st.image(df['image'][i], use_column_width=True)
|
| 63 |
+
|
| 64 |
+
with col2:
|
| 65 |
+
st.write(f"**Название книги:** {df['title'][i]}")
|
| 66 |
+
st.write(f"**Автор:** {df['author'][i]}")
|
| 67 |
+
st.write(f"**Описание:** {df['annotation'][i]}")
|
| 68 |
+
st.write(f"**Оценка сходства:** {similarity_percent:.2f}%")
|
| 69 |
+
|
| 70 |
+
st.write("---")
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|