Spaces:
Sleeping
Sleeping
Update unet_model.py
Browse files- unet_model.py +4 -1
unet_model.py
CHANGED
|
@@ -13,6 +13,7 @@ class UNet(nn.Module):
|
|
| 13 |
nn.ReLU(inplace=True),
|
| 14 |
)
|
| 15 |
|
|
|
|
| 16 |
self.enc1 = conv_block(3, 64)
|
| 17 |
self.enc2 = conv_block(64, 128)
|
| 18 |
self.enc3 = conv_block(128, 256)
|
|
@@ -20,8 +21,10 @@ class UNet(nn.Module):
|
|
| 20 |
|
| 21 |
self.pool = nn.MaxPool2d(2)
|
| 22 |
|
|
|
|
| 23 |
self.bottleneck = conv_block(512, 1024)
|
| 24 |
|
|
|
|
| 25 |
self.upconv4 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2)
|
| 26 |
self.dec4 = conv_block(1024, 512)
|
| 27 |
|
|
@@ -67,4 +70,4 @@ class UNet(nn.Module):
|
|
| 67 |
u1 = torch.cat([u1, c1], dim=1)
|
| 68 |
d1 = self.dec1(u1)
|
| 69 |
|
| 70 |
-
return torch.sigmoid(self.conv_last(d1))
|
|
|
|
| 13 |
nn.ReLU(inplace=True),
|
| 14 |
)
|
| 15 |
|
| 16 |
+
# Encoder
|
| 17 |
self.enc1 = conv_block(3, 64)
|
| 18 |
self.enc2 = conv_block(64, 128)
|
| 19 |
self.enc3 = conv_block(128, 256)
|
|
|
|
| 21 |
|
| 22 |
self.pool = nn.MaxPool2d(2)
|
| 23 |
|
| 24 |
+
# Bottleneck
|
| 25 |
self.bottleneck = conv_block(512, 1024)
|
| 26 |
|
| 27 |
+
# Decoder
|
| 28 |
self.upconv4 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2)
|
| 29 |
self.dec4 = conv_block(1024, 512)
|
| 30 |
|
|
|
|
| 70 |
u1 = torch.cat([u1, c1], dim=1)
|
| 71 |
d1 = self.dec1(u1)
|
| 72 |
|
| 73 |
+
return torch.sigmoid(self.conv_last(d1)) # sigmoid kept (matches BCELoss training)
|