import torch import torch.nn as nn class UNet(nn.Module): def __init__(self): super(UNet, self).__init__() def conv_block(in_channels, out_channels): return nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.ReLU(inplace=True), ) # Encoder self.enc1 = conv_block(3, 64) self.enc2 = conv_block(64, 128) self.enc3 = conv_block(128, 256) self.enc4 = conv_block(256, 512) self.pool = nn.MaxPool2d(2) # Bottleneck self.bottleneck = conv_block(512, 1024) # Decoder self.upconv4 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2) self.dec4 = conv_block(1024, 512) self.upconv3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2) self.dec3 = conv_block(512, 256) self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2) self.dec2 = conv_block(256, 128) self.upconv1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2) self.dec1 = conv_block(128, 64) self.conv_last = nn.Conv2d(64, 1, kernel_size=1) def forward(self, x): c1 = self.enc1(x) p1 = self.pool(c1) c2 = self.enc2(p1) p2 = self.pool(c2) c3 = self.enc3(p2) p3 = self.pool(c3) c4 = self.enc4(p3) p4 = self.pool(c4) bottleneck = self.bottleneck(p4) u4 = self.upconv4(bottleneck) u4 = torch.cat([u4, c4], dim=1) d4 = self.dec4(u4) u3 = self.upconv3(d4) u3 = torch.cat([u3, c3], dim=1) d3 = self.dec3(u3) u2 = self.upconv2(d3) u2 = torch.cat([u2, c2], dim=1) d2 = self.dec2(u2) u1 = self.upconv1(d2) u1 = torch.cat([u1, c1], dim=1) d1 = self.dec1(u1) return torch.sigmoid(self.conv_last(d1)) # sigmoid kept (matches BCELoss training)