Spaces:
Runtime error
Runtime error
Create unet_model.py
Browse files- unet_model.py +73 -0
unet_model.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
class UNet(nn.Module):
|
5 |
+
def __init__(self):
|
6 |
+
super(UNet, self).__init__()
|
7 |
+
|
8 |
+
def conv_block(in_channels, out_channels):
|
9 |
+
return nn.Sequential(
|
10 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
|
11 |
+
nn.ReLU(inplace=True),
|
12 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
13 |
+
nn.ReLU(inplace=True),
|
14 |
+
)
|
15 |
+
|
16 |
+
# Encoder
|
17 |
+
self.enc1 = conv_block(3, 64)
|
18 |
+
self.enc2 = conv_block(64, 128)
|
19 |
+
self.enc3 = conv_block(128, 256)
|
20 |
+
self.enc4 = conv_block(256, 512)
|
21 |
+
|
22 |
+
self.pool = nn.MaxPool2d(2)
|
23 |
+
|
24 |
+
# Bottleneck
|
25 |
+
self.bottleneck = conv_block(512, 1024)
|
26 |
+
|
27 |
+
# Decoder
|
28 |
+
self.upconv4 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2)
|
29 |
+
self.dec4 = conv_block(1024, 512)
|
30 |
+
|
31 |
+
self.upconv3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
|
32 |
+
self.dec3 = conv_block(512, 256)
|
33 |
+
|
34 |
+
self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
|
35 |
+
self.dec2 = conv_block(256, 128)
|
36 |
+
|
37 |
+
self.upconv1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
|
38 |
+
self.dec1 = conv_block(128, 64)
|
39 |
+
|
40 |
+
self.conv_last = nn.Conv2d(64, 1, kernel_size=1)
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
c1 = self.enc1(x)
|
44 |
+
p1 = self.pool(c1)
|
45 |
+
|
46 |
+
c2 = self.enc2(p1)
|
47 |
+
p2 = self.pool(c2)
|
48 |
+
|
49 |
+
c3 = self.enc3(p2)
|
50 |
+
p3 = self.pool(c3)
|
51 |
+
|
52 |
+
c4 = self.enc4(p3)
|
53 |
+
p4 = self.pool(c4)
|
54 |
+
|
55 |
+
bottleneck = self.bottleneck(p4)
|
56 |
+
|
57 |
+
u4 = self.upconv4(bottleneck)
|
58 |
+
u4 = torch.cat([u4, c4], dim=1)
|
59 |
+
d4 = self.dec4(u4)
|
60 |
+
|
61 |
+
u3 = self.upconv3(d4)
|
62 |
+
u3 = torch.cat([u3, c3], dim=1)
|
63 |
+
d3 = self.dec3(u3)
|
64 |
+
|
65 |
+
u2 = self.upconv2(d3)
|
66 |
+
u2 = torch.cat([u2, c2], dim=1)
|
67 |
+
d2 = self.dec2(u2)
|
68 |
+
|
69 |
+
u1 = self.upconv1(d2)
|
70 |
+
u1 = torch.cat([u1, c1], dim=1)
|
71 |
+
d1 = self.dec1(u1)
|
72 |
+
|
73 |
+
return torch.sigmoid(self.conv_last(d1)) # sigmoid kept (matches BCELoss training)
|