File size: 2,299 Bytes
01f5415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from typing import Sequence, List, Tuple
from models.vectorizer import Vectorizer
import numpy as np
from sentence_transformers import SentenceTransformer
import faiss

class PromptSearchEngine:
    def __init__(self, model_name='bert-base-nli-mean-tokens'):
        self.model = SentenceTransformer(model_name)
        # Initialize FAISS index with right number of dimensions
        self.embedding_dimension = self.model.get_sentence_embedding_dimension()
        self.index = faiss.IndexFlatL2(self.embedding_dimension)  # Euclidian distance index - brute force for small datasets
        self.prompts_track = []  # To keep track of original prompts for returning results


    def add_prompts_to_vector_database(self, prompts):
        embeddings = self.model.encode(prompts)
        self.index.add(np.array(embeddings).astype('float32'))  
        self.prompts_track.extend(prompts)


    def most_similar(self, query, top_k=5):
        # Encode the query
        query_embedding = self.model.encode([query]).astype('float32')
        
        # Optimizovana pretraga ali moramo promeniti vrstu indeksa
        distances, indices = self.index.search(query_embedding, top_k)
        
        # Retrieve the corresponding prompts for the found indices
        similar_prompts = [self.prompts_track[idx] for idx in indices[0]]
        
        return similar_prompts, distances[0]  # Return both the similar prompts and their distances


    def cosine_similarity(query_vector: np.ndarray, corpus_vectors: np.ndarray) -> np.ndarray:
        """Compute the cosine similarity between a query vector and a set of corpus vectors.
        Args: query_vector: The query vector to compare against the corpus vectors. corpus_vectors: The set of corpus vectors to compare against the query vector. 
        Returns: The cosine similarity between the query vector and the corpus vectors.
        """
        similarities = {}
        for index, vector in enumerate(corpus_vectors):
            if np.linalg.norm(vector) == 0:
                raise ValueError("One of the corpus vectors has zero norm.")
            cos_similarity = np.dot(vector, query_vector) / (np.linalg.norm(vector) * np.linalg.norm(query_vector))
            similarities[index] = cos_similarity
        return similarities