Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							Β·
						
						9763171
	
1
								Parent(s):
							
							bf4036b
								
Upload 60 files
Browse files- eval_configs/minigpt4_eval.yaml +3 -6
- eval_configs/minigptv2_eval.yaml +1 -1
- minigpt4/common/dist_utils.py +4 -1
- minigpt4/configs/models/minigpt_v2.yaml +1 -1
- minigpt4/conversation/conversation.py +64 -22
- minigpt4/datasets/datasets/cc_sbu_dataset.py +2 -2
- minigpt4/datasets/datasets/laion_dataset.py +1 -1
- minigpt4/models/__init__.py +5 -3
- minigpt4/models/base_model.py +128 -127
- minigpt4/models/minigpt_base.py +3 -2
- minigpt4/models/modeling_llama.py +20 -664
- minigpt4/runners/runner_base.py +3 -3
    	
        eval_configs/minigpt4_eval.yaml
    CHANGED
    
    | @@ -1,14 +1,11 @@ | |
| 1 | 
             
            model:
         | 
| 2 | 
            -
              arch:  | 
| 3 | 
            -
              model_type:  | 
| 4 | 
            -
              freeze_vit: True
         | 
| 5 | 
            -
              freeze_qformer: True
         | 
| 6 | 
             
              max_txt_len: 160
         | 
| 7 | 
             
              end_sym: "###"
         | 
| 8 | 
             
              low_resource: True
         | 
| 9 | 
            -
              prompt_path: "prompts/alignment.txt"
         | 
| 10 | 
             
              prompt_template: '###Human: {} ###Assistant: '
         | 
| 11 | 
            -
              ckpt: ' | 
| 12 |  | 
| 13 |  | 
| 14 | 
             
            datasets:
         | 
|  | |
| 1 | 
             
            model:
         | 
| 2 | 
            +
              arch: minigpt4
         | 
| 3 | 
            +
              model_type: pretrain_vicuna0
         | 
|  | |
|  | |
| 4 | 
             
              max_txt_len: 160
         | 
| 5 | 
             
              end_sym: "###"
         | 
| 6 | 
             
              low_resource: True
         | 
|  | |
| 7 | 
             
              prompt_template: '###Human: {} ###Assistant: '
         | 
| 8 | 
            +
              ckpt: 'please set this value to the path of pretrained checkpoint'
         | 
| 9 |  | 
| 10 |  | 
| 11 | 
             
            datasets:
         | 
    	
        eval_configs/minigptv2_eval.yaml
    CHANGED
    
    | @@ -5,7 +5,7 @@ model: | |
| 5 | 
             
              end_sym: "</s>"
         | 
| 6 | 
             
              low_resource: True
         | 
| 7 | 
             
              prompt_template: '[INST] {} [/INST]'
         | 
| 8 | 
            -
              ckpt: ' | 
| 9 | 
             
              lora_r: 64
         | 
| 10 | 
             
              lora_alpha: 16
         | 
| 11 |  | 
|  | |
| 5 | 
             
              end_sym: "</s>"
         | 
| 6 | 
             
              low_resource: True
         | 
| 7 | 
             
              prompt_template: '[INST] {} [/INST]'
         | 
| 8 | 
            +
              ckpt: 'please set this value to the path of pretrained checkpoint'
         | 
| 9 | 
             
              lora_r: 64
         | 
| 10 | 
             
              lora_alpha: 16
         | 
| 11 |  | 
    	
        minigpt4/common/dist_utils.py
    CHANGED
    
    | @@ -55,7 +55,10 @@ def is_main_process(): | |
| 55 |  | 
| 56 |  | 
| 57 | 
             
            def init_distributed_mode(args):
         | 
| 58 | 
            -
                if  | 
|  | |
|  | |
|  | |
| 59 | 
             
                    args.rank = int(os.environ["RANK"])
         | 
| 60 | 
             
                    args.world_size = int(os.environ["WORLD_SIZE"])
         | 
| 61 | 
             
                    args.gpu = int(os.environ["LOCAL_RANK"])
         | 
|  | |
| 55 |  | 
| 56 |  | 
| 57 | 
             
            def init_distributed_mode(args):
         | 
| 58 | 
            +
                if args.distributed is False:
         | 
| 59 | 
            +
                    print("Not using distributed mode")
         | 
| 60 | 
            +
                    return
         | 
| 61 | 
            +
                elif "RANK" in os.environ and "WORLD_SIZE" in os.environ:
         | 
| 62 | 
             
                    args.rank = int(os.environ["RANK"])
         | 
| 63 | 
             
                    args.world_size = int(os.environ["WORLD_SIZE"])
         | 
| 64 | 
             
                    args.gpu = int(os.environ["LOCAL_RANK"])
         | 
    	
        minigpt4/configs/models/minigpt_v2.yaml
    CHANGED
    
    | @@ -11,7 +11,7 @@ model: | |
| 11 | 
             
              # generation configs
         | 
| 12 | 
             
              prompt: ""
         | 
| 13 |  | 
| 14 | 
            -
              llama_model: " | 
| 15 | 
             
              lora_r: 64
         | 
| 16 | 
             
              lora_alpha: 16
         | 
| 17 |  | 
|  | |
| 11 | 
             
              # generation configs
         | 
| 12 | 
             
              prompt: ""
         | 
| 13 |  | 
| 14 | 
            +
              llama_model: "please set this value to the path of llama2-chat-7b"
         | 
| 15 | 
             
              lora_r: 64
         | 
| 16 | 
             
              lora_alpha: 16
         | 
| 17 |  | 
    	
        minigpt4/conversation/conversation.py
    CHANGED
    
    | @@ -1,10 +1,11 @@ | |
| 1 | 
             
            import argparse
         | 
| 2 | 
             
            import time
         | 
|  | |
| 3 | 
             
            from PIL import Image
         | 
| 4 |  | 
| 5 | 
             
            import torch
         | 
| 6 | 
             
            from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
         | 
| 7 | 
            -
            from transformers import StoppingCriteria, StoppingCriteriaList
         | 
| 8 |  | 
| 9 | 
             
            import dataclasses
         | 
| 10 | 
             
            from enum import auto, Enum
         | 
| @@ -39,18 +40,18 @@ class Conversation: | |
| 39 | 
             
                        ret = self.system + self.sep
         | 
| 40 | 
             
                        for role, message in self.messages:
         | 
| 41 | 
             
                            if message:
         | 
| 42 | 
            -
                                ret += role +  | 
| 43 | 
             
                            else:
         | 
| 44 | 
            -
                                ret += role | 
| 45 | 
             
                        return ret
         | 
| 46 | 
             
                    elif self.sep_style == SeparatorStyle.TWO:
         | 
| 47 | 
             
                        seps = [self.sep, self.sep2]
         | 
| 48 | 
             
                        ret = self.system + seps[0]
         | 
| 49 | 
             
                        for i, (role, message) in enumerate(self.messages):
         | 
| 50 | 
             
                            if message:
         | 
| 51 | 
            -
                                ret += role +  | 
| 52 | 
             
                            else:
         | 
| 53 | 
            -
                                ret += role | 
| 54 | 
             
                        return ret
         | 
| 55 | 
             
                    else:
         | 
| 56 | 
             
                        raise ValueError(f"Invalid style: {self.sep_style}")
         | 
| @@ -106,26 +107,39 @@ class StoppingCriteriaSub(StoppingCriteria): | |
| 106 | 
             
                    return False
         | 
| 107 |  | 
| 108 |  | 
| 109 | 
            -
             | 
| 110 | 
             
                system="Give the following image: <Img>ImageContent</Img>. "
         | 
| 111 | 
             
                       "You will be able to see the image once I provide it to you. Please answer my questions.",
         | 
| 112 | 
            -
                roles=("Human", "Assistant"),
         | 
| 113 | 
             
                messages=[],
         | 
| 114 | 
             
                offset=2,
         | 
| 115 | 
             
                sep_style=SeparatorStyle.SINGLE,
         | 
| 116 | 
             
                sep="###",
         | 
| 117 | 
             
            )
         | 
| 118 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 119 |  | 
| 120 |  | 
| 121 | 
             
            class Chat:
         | 
| 122 | 
            -
                def __init__(self, model, vis_processor, device='cuda:0'):
         | 
| 123 | 
             
                    self.device = device
         | 
| 124 | 
             
                    self.model = model
         | 
| 125 | 
             
                    self.vis_processor = vis_processor
         | 
| 126 | 
            -
             | 
| 127 | 
            -
             | 
| 128 | 
            -
             | 
|  | |
|  | |
|  | |
| 129 |  | 
| 130 | 
             
                def ask(self, text, conv):
         | 
| 131 | 
             
                    if len(conv.messages) > 0 and conv.messages[-1][0] == conv.roles[0] \
         | 
| @@ -134,11 +148,19 @@ class Chat: | |
| 134 | 
             
                    else:
         | 
| 135 | 
             
                        conv.append_message(conv.roles[0], text)
         | 
| 136 |  | 
| 137 | 
            -
                def  | 
| 138 | 
            -
             | 
| 139 | 
             
                    conv.append_message(conv.roles[1], None)
         | 
| 140 | 
             
                    embs = self.get_context_emb(conv, img_list)
         | 
| 141 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 142 | 
             
                        inputs_embeds=embs,
         | 
| 143 | 
             
                        max_new_tokens=max_new_tokens,
         | 
| 144 | 
             
                        stopping_criteria=self.stopping_criteria,
         | 
| @@ -148,18 +170,33 @@ class Chat: | |
| 148 | 
             
                        top_p=top_p,
         | 
| 149 | 
             
                        repetition_penalty=repetition_penalty,
         | 
| 150 | 
             
                        length_penalty=length_penalty,
         | 
| 151 | 
            -
                        temperature=temperature,
         | 
| 152 | 
             
                    )
         | 
| 153 | 
            -
                     | 
| 154 | 
            -
             | 
| 155 | 
            -
             | 
| 156 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
| 157 | 
             
                    output_text = output_text.split('###')[0]  # remove the stop sign '###'
         | 
| 158 | 
             
                    output_text = output_text.split('Assistant:')[-1].strip()
         | 
|  | |
| 159 | 
             
                    conv.messages[-1][1] = output_text
         | 
| 160 | 
             
                    return output_text, output_token.cpu().numpy()
         | 
| 161 |  | 
| 162 | 
            -
                def  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 163 | 
             
                    if isinstance(image, str):  # is a image path
         | 
| 164 | 
             
                        raw_image = Image.open(image).convert('RGB')
         | 
| 165 | 
             
                        image = self.vis_processor(raw_image).unsqueeze(0).to(self.device)
         | 
| @@ -173,9 +210,12 @@ class Chat: | |
| 173 |  | 
| 174 | 
             
                    image_emb, _ = self.model.encode_img(image)
         | 
| 175 | 
             
                    img_list.append(image_emb)
         | 
|  | |
|  | |
| 176 | 
             
                    conv.append_message(conv.roles[0], "<Img><ImageHere></Img>")
         | 
|  | |
| 177 | 
             
                    msg = "Received."
         | 
| 178 | 
            -
             | 
| 179 | 
             
                    return msg
         | 
| 180 |  | 
| 181 | 
             
                def get_context_emb(self, conv, img_list):
         | 
| @@ -188,7 +228,9 @@ class Chat: | |
| 188 | 
             
                        # only add bos to the first seg
         | 
| 189 | 
             
                        for i, seg in enumerate(prompt_segs)
         | 
| 190 | 
             
                    ]
         | 
| 191 | 
            -
                     | 
|  | |
|  | |
| 192 | 
             
                    mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
         | 
| 193 | 
             
                    mixed_embs = torch.cat(mixed_embs, dim=1)
         | 
| 194 | 
             
                    return mixed_embs
         | 
|  | |
| 1 | 
             
            import argparse
         | 
| 2 | 
             
            import time
         | 
| 3 | 
            +
            from threading import Thread
         | 
| 4 | 
             
            from PIL import Image
         | 
| 5 |  | 
| 6 | 
             
            import torch
         | 
| 7 | 
             
            from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
         | 
| 8 | 
            +
            from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
         | 
| 9 |  | 
| 10 | 
             
            import dataclasses
         | 
| 11 | 
             
            from enum import auto, Enum
         | 
|  | |
| 40 | 
             
                        ret = self.system + self.sep
         | 
| 41 | 
             
                        for role, message in self.messages:
         | 
| 42 | 
             
                            if message:
         | 
| 43 | 
            +
                                ret += role + message + self.sep
         | 
| 44 | 
             
                            else:
         | 
| 45 | 
            +
                                ret += role
         | 
| 46 | 
             
                        return ret
         | 
| 47 | 
             
                    elif self.sep_style == SeparatorStyle.TWO:
         | 
| 48 | 
             
                        seps = [self.sep, self.sep2]
         | 
| 49 | 
             
                        ret = self.system + seps[0]
         | 
| 50 | 
             
                        for i, (role, message) in enumerate(self.messages):
         | 
| 51 | 
             
                            if message:
         | 
| 52 | 
            +
                                ret += role + message + seps[i % 2]
         | 
| 53 | 
             
                            else:
         | 
| 54 | 
            +
                                ret += role
         | 
| 55 | 
             
                        return ret
         | 
| 56 | 
             
                    else:
         | 
| 57 | 
             
                        raise ValueError(f"Invalid style: {self.sep_style}")
         | 
|  | |
| 107 | 
             
                    return False
         | 
| 108 |  | 
| 109 |  | 
| 110 | 
            +
            CONV_VISION_Vicuna0 = Conversation(
         | 
| 111 | 
             
                system="Give the following image: <Img>ImageContent</Img>. "
         | 
| 112 | 
             
                       "You will be able to see the image once I provide it to you. Please answer my questions.",
         | 
| 113 | 
            +
                roles=("Human: ", "Assistant: "),
         | 
| 114 | 
             
                messages=[],
         | 
| 115 | 
             
                offset=2,
         | 
| 116 | 
             
                sep_style=SeparatorStyle.SINGLE,
         | 
| 117 | 
             
                sep="###",
         | 
| 118 | 
             
            )
         | 
| 119 |  | 
| 120 | 
            +
            CONV_VISION_LLama2 = Conversation(
         | 
| 121 | 
            +
                system="Give the following image: <Img>ImageContent</Img>. "
         | 
| 122 | 
            +
                       "You will be able to see the image once I provide it to you. Please answer my questions.",
         | 
| 123 | 
            +
                roles=("<s>[INST] ", " [/INST] "),
         | 
| 124 | 
            +
                messages=[],
         | 
| 125 | 
            +
                offset=2,
         | 
| 126 | 
            +
                sep_style=SeparatorStyle.SINGLE,
         | 
| 127 | 
            +
                sep="",
         | 
| 128 | 
            +
            )
         | 
| 129 | 
            +
             | 
| 130 |  | 
| 131 |  | 
| 132 | 
             
            class Chat:
         | 
| 133 | 
            +
                def __init__(self, model, vis_processor, device='cuda:0', stopping_criteria=None):
         | 
| 134 | 
             
                    self.device = device
         | 
| 135 | 
             
                    self.model = model
         | 
| 136 | 
             
                    self.vis_processor = vis_processor
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                    if stopping_criteria is not None:
         | 
| 139 | 
            +
                        self.stopping_criteria = stopping_criteria
         | 
| 140 | 
            +
                    else:
         | 
| 141 | 
            +
                        stop_words_ids = [torch.tensor([2]).to(self.device)]
         | 
| 142 | 
            +
                        self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
         | 
| 143 |  | 
| 144 | 
             
                def ask(self, text, conv):
         | 
| 145 | 
             
                    if len(conv.messages) > 0 and conv.messages[-1][0] == conv.roles[0] \
         | 
|  | |
| 148 | 
             
                    else:
         | 
| 149 | 
             
                        conv.append_message(conv.roles[0], text)
         | 
| 150 |  | 
| 151 | 
            +
                def answer_prepare(self, conv, img_list, max_new_tokens=300, num_beams=1, min_length=1, top_p=0.9,
         | 
| 152 | 
            +
                                   repetition_penalty=1.05, length_penalty=1, temperature=1.0, max_length=2000):
         | 
| 153 | 
             
                    conv.append_message(conv.roles[1], None)
         | 
| 154 | 
             
                    embs = self.get_context_emb(conv, img_list)
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                    current_max_len = embs.shape[1] + max_new_tokens
         | 
| 157 | 
            +
                    if current_max_len - max_length > 0:
         | 
| 158 | 
            +
                        print('Warning: The number of tokens in current conversation exceeds the max length. '
         | 
| 159 | 
            +
                              'The model will not see the contexts outside the range.')
         | 
| 160 | 
            +
                    begin_idx = max(0, current_max_len - max_length)
         | 
| 161 | 
            +
                    embs = embs[:, begin_idx:]
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                    generation_kwargs = dict(
         | 
| 164 | 
             
                        inputs_embeds=embs,
         | 
| 165 | 
             
                        max_new_tokens=max_new_tokens,
         | 
| 166 | 
             
                        stopping_criteria=self.stopping_criteria,
         | 
|  | |
| 170 | 
             
                        top_p=top_p,
         | 
| 171 | 
             
                        repetition_penalty=repetition_penalty,
         | 
| 172 | 
             
                        length_penalty=length_penalty,
         | 
| 173 | 
            +
                        temperature=float(temperature),
         | 
| 174 | 
             
                    )
         | 
| 175 | 
            +
                    return generation_kwargs
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                def answer(self, conv, img_list, **kargs):
         | 
| 178 | 
            +
                    generation_dict = self.answer_prepare(conv, img_list, **kargs)
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    output_token = self.model.llama_model.generate(**generation_dict)[0]
         | 
| 181 | 
            +
                    output_text = self.model.llama_tokenizer.decode(output_token, skip_special_tokens=True)
         | 
| 182 | 
            +
             | 
| 183 | 
             
                    output_text = output_text.split('###')[0]  # remove the stop sign '###'
         | 
| 184 | 
             
                    output_text = output_text.split('Assistant:')[-1].strip()
         | 
| 185 | 
            +
             | 
| 186 | 
             
                    conv.messages[-1][1] = output_text
         | 
| 187 | 
             
                    return output_text, output_token.cpu().numpy()
         | 
| 188 |  | 
| 189 | 
            +
                def stream_answer(self, conv, img_list, **kargs):
         | 
| 190 | 
            +
                    generation_kwargs = self.answer_prepare(conv, img_list, **kargs)
         | 
| 191 | 
            +
                    streamer = TextIteratorStreamer(self.model.llama_tokenizer, skip_special_tokens=True)
         | 
| 192 | 
            +
                    generation_kwargs['streamer'] = streamer
         | 
| 193 | 
            +
                    thread = Thread(target=self.model.llama_model.generate, kwargs=generation_kwargs)
         | 
| 194 | 
            +
                    thread.start()
         | 
| 195 | 
            +
                    return streamer
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                def encode_img(self, img_list):
         | 
| 198 | 
            +
                    image = img_list[0]
         | 
| 199 | 
            +
                    img_list.pop(0)
         | 
| 200 | 
             
                    if isinstance(image, str):  # is a image path
         | 
| 201 | 
             
                        raw_image = Image.open(image).convert('RGB')
         | 
| 202 | 
             
                        image = self.vis_processor(raw_image).unsqueeze(0).to(self.device)
         | 
|  | |
| 210 |  | 
| 211 | 
             
                    image_emb, _ = self.model.encode_img(image)
         | 
| 212 | 
             
                    img_list.append(image_emb)
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                def upload_img(self, image, conv, img_list):
         | 
| 215 | 
             
                    conv.append_message(conv.roles[0], "<Img><ImageHere></Img>")
         | 
| 216 | 
            +
                    img_list.append(image)
         | 
| 217 | 
             
                    msg = "Received."
         | 
| 218 | 
            +
             | 
| 219 | 
             
                    return msg
         | 
| 220 |  | 
| 221 | 
             
                def get_context_emb(self, conv, img_list):
         | 
|  | |
| 228 | 
             
                        # only add bos to the first seg
         | 
| 229 | 
             
                        for i, seg in enumerate(prompt_segs)
         | 
| 230 | 
             
                    ]
         | 
| 231 | 
            +
                    print('debug device: ', self.device)
         | 
| 232 | 
            +
                    print('debug model device: ', self.model.device)
         | 
| 233 | 
            +
                    seg_embs = [self.model.embed_tokens(seg_t) for seg_t in seg_tokens]
         | 
| 234 | 
             
                    mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
         | 
| 235 | 
             
                    mixed_embs = torch.cat(mixed_embs, dim=1)
         | 
| 236 | 
             
                    return mixed_embs
         | 
    	
        minigpt4/datasets/datasets/cc_sbu_dataset.py
    CHANGED
    
    | @@ -22,7 +22,7 @@ class CCSBUDataset(BaseDataset): | |
| 22 | 
             
                def to_dict(self, sample):
         | 
| 23 | 
             
                    return {
         | 
| 24 | 
             
                        "image": sample[0],
         | 
| 25 | 
            -
                        " | 
| 26 | 
             
                    }
         | 
| 27 |  | 
| 28 |  | 
| @@ -42,6 +42,6 @@ class CCSBUAlignDataset(CaptionDataset): | |
| 42 |  | 
| 43 | 
             
                    return {
         | 
| 44 | 
             
                        "image": image,
         | 
| 45 | 
            -
                        " | 
| 46 | 
             
                        "image_id": self.img_ids[ann["image_id"]],
         | 
| 47 | 
             
                    }
         | 
|  | |
| 22 | 
             
                def to_dict(self, sample):
         | 
| 23 | 
             
                    return {
         | 
| 24 | 
             
                        "image": sample[0],
         | 
| 25 | 
            +
                        "answer": self.text_processor(sample[1]["caption"]),
         | 
| 26 | 
             
                    }
         | 
| 27 |  | 
| 28 |  | 
|  | |
| 42 |  | 
| 43 | 
             
                    return {
         | 
| 44 | 
             
                        "image": image,
         | 
| 45 | 
            +
                        "answer": caption,
         | 
| 46 | 
             
                        "image_id": self.img_ids[ann["image_id"]],
         | 
| 47 | 
             
                    }
         | 
    	
        minigpt4/datasets/datasets/laion_dataset.py
    CHANGED
    
    | @@ -26,6 +26,6 @@ class LaionDataset(BaseDataset): | |
| 26 | 
             
                def to_dict(self, sample):
         | 
| 27 | 
             
                    return {
         | 
| 28 | 
             
                        "image": sample[0],
         | 
| 29 | 
            -
                        " | 
| 30 | 
             
                    }
         | 
| 31 |  | 
|  | |
| 26 | 
             
                def to_dict(self, sample):
         | 
| 27 | 
             
                    return {
         | 
| 28 | 
             
                        "image": sample[0],
         | 
| 29 | 
            +
                        "answer": self.text_processor(sample[1]["caption"]),
         | 
| 30 | 
             
                    }
         | 
| 31 |  | 
    	
        minigpt4/models/__init__.py
    CHANGED
    
    | @@ -11,16 +11,18 @@ from omegaconf import OmegaConf | |
| 11 |  | 
| 12 | 
             
            from minigpt4.common.registry import registry
         | 
| 13 | 
             
            from minigpt4.models.base_model import BaseModel
         | 
| 14 | 
            -
            from minigpt4.models. | 
| 15 | 
            -
            from minigpt4.models. | 
|  | |
| 16 | 
             
            from minigpt4.processors.base_processor import BaseProcessor
         | 
| 17 |  | 
| 18 |  | 
| 19 | 
             
            __all__ = [
         | 
| 20 | 
             
                "load_model",
         | 
| 21 | 
             
                "BaseModel",
         | 
| 22 | 
            -
                " | 
| 23 | 
             
                "MiniGPT4",
         | 
|  | |
| 24 | 
             
            ]
         | 
| 25 |  | 
| 26 |  | 
|  | |
| 11 |  | 
| 12 | 
             
            from minigpt4.common.registry import registry
         | 
| 13 | 
             
            from minigpt4.models.base_model import BaseModel
         | 
| 14 | 
            +
            from minigpt4.models.minigpt_base import MiniGPTBase
         | 
| 15 | 
            +
            from minigpt4.models.minigpt4 import MiniGPT4
         | 
| 16 | 
            +
            from minigpt4.models.minigpt_v2 import MiniGPTv2
         | 
| 17 | 
             
            from minigpt4.processors.base_processor import BaseProcessor
         | 
| 18 |  | 
| 19 |  | 
| 20 | 
             
            __all__ = [
         | 
| 21 | 
             
                "load_model",
         | 
| 22 | 
             
                "BaseModel",
         | 
| 23 | 
            +
                "MiniGPTBase",
         | 
| 24 | 
             
                "MiniGPT4",
         | 
| 25 | 
            +
                "MiniGPTv2"
         | 
| 26 | 
             
            ]
         | 
| 27 |  | 
| 28 |  | 
    	
        minigpt4/models/base_model.py
    CHANGED
    
    | @@ -5,15 +5,26 @@ | |
| 5 | 
             
             For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
         | 
| 6 | 
             
            """
         | 
| 7 |  | 
| 8 | 
            -
            import logging
         | 
| 9 | 
             
            import os
         | 
|  | |
|  | |
| 10 |  | 
|  | |
| 11 | 
             
            import numpy as np
         | 
| 12 | 
             
            import torch
         | 
| 13 | 
             
            import torch.nn as nn
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 14 | 
             
            from minigpt4.common.dist_utils import download_cached_file, is_dist_avail_and_initialized
         | 
| 15 | 
             
            from minigpt4.common.utils import get_abs_path, is_url
         | 
| 16 | 
            -
            from  | 
|  | |
| 17 |  | 
| 18 |  | 
| 19 | 
             
            class BaseModel(nn.Module):
         | 
| @@ -24,7 +35,7 @@ class BaseModel(nn.Module): | |
| 24 |  | 
| 25 | 
             
                @property
         | 
| 26 | 
             
                def device(self):
         | 
| 27 | 
            -
                    return list(self.parameters())[ | 
| 28 |  | 
| 29 | 
             
                def load_checkpoint(self, url_or_filename):
         | 
| 30 | 
             
                    """
         | 
| @@ -117,131 +128,121 @@ class BaseModel(nn.Module): | |
| 117 | 
             
                    else:
         | 
| 118 | 
             
                        return tot
         | 
| 119 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 120 |  | 
| 121 | 
            -
            class BaseEncoder(nn.Module):
         | 
| 122 | 
            -
                """
         | 
| 123 | 
            -
                Base class for primitive encoders, such as ViT, TimeSformer, etc.
         | 
| 124 | 
            -
                """
         | 
| 125 |  | 
| 126 | 
            -
                def __init__(self):
         | 
| 127 | 
            -
                    super().__init__()
         | 
| 128 |  | 
| 129 | 
            -
                def forward_features(self, samples, **kwargs):
         | 
| 130 | 
            -
                    raise NotImplementedError
         | 
| 131 |  | 
| 132 | 
            -
                @property
         | 
| 133 | 
            -
                def device(self):
         | 
| 134 | 
            -
                    return list(self.parameters())[0].device
         | 
| 135 | 
            -
             | 
| 136 | 
            -
             | 
| 137 | 
            -
            class SharedQueueMixin:
         | 
| 138 | 
            -
                @torch.no_grad()
         | 
| 139 | 
            -
                def _dequeue_and_enqueue(self, image_feat, text_feat, idxs=None):
         | 
| 140 | 
            -
                    # gather keys before updating queue
         | 
| 141 | 
            -
                    image_feats = concat_all_gather(image_feat)
         | 
| 142 | 
            -
                    text_feats = concat_all_gather(text_feat)
         | 
| 143 | 
            -
             | 
| 144 | 
            -
                    batch_size = image_feats.shape[0]
         | 
| 145 | 
            -
             | 
| 146 | 
            -
                    ptr = int(self.queue_ptr)
         | 
| 147 | 
            -
                    assert self.queue_size % batch_size == 0  # for simplicity
         | 
| 148 | 
            -
             | 
| 149 | 
            -
                    # replace the keys at ptr (dequeue and enqueue)
         | 
| 150 | 
            -
                    self.image_queue[:, ptr : ptr + batch_size] = image_feats.T
         | 
| 151 | 
            -
                    self.text_queue[:, ptr : ptr + batch_size] = text_feats.T
         | 
| 152 | 
            -
             | 
| 153 | 
            -
                    if idxs is not None:
         | 
| 154 | 
            -
                        idxs = concat_all_gather(idxs)
         | 
| 155 | 
            -
                        self.idx_queue[:, ptr : ptr + batch_size] = idxs.T
         | 
| 156 | 
            -
             | 
| 157 | 
            -
                    ptr = (ptr + batch_size) % self.queue_size  # move pointer
         | 
| 158 | 
            -
                    self.queue_ptr[0] = ptr
         | 
| 159 | 
            -
             | 
| 160 | 
            -
             | 
| 161 | 
            -
            class MomentumDistilationMixin:
         | 
| 162 | 
            -
                @torch.no_grad()
         | 
| 163 | 
            -
                def copy_params(self):
         | 
| 164 | 
            -
                    for model_pair in self.model_pairs:
         | 
| 165 | 
            -
                        for param, param_m in zip(
         | 
| 166 | 
            -
                            model_pair[0].parameters(), model_pair[1].parameters()
         | 
| 167 | 
            -
                        ):
         | 
| 168 | 
            -
                            param_m.data.copy_(param.data)  # initialize
         | 
| 169 | 
            -
                            param_m.requires_grad = False  # not update by gradient
         | 
| 170 | 
            -
             | 
| 171 | 
            -
                @torch.no_grad()
         | 
| 172 | 
            -
                def _momentum_update(self):
         | 
| 173 | 
            -
                    for model_pair in self.model_pairs:
         | 
| 174 | 
            -
                        for param, param_m in zip(
         | 
| 175 | 
            -
                            model_pair[0].parameters(), model_pair[1].parameters()
         | 
| 176 | 
            -
                        ):
         | 
| 177 | 
            -
                            param_m.data = param_m.data * self.momentum + param.data * (
         | 
| 178 | 
            -
                                1.0 - self.momentum
         | 
| 179 | 
            -
                            )
         | 
| 180 | 
            -
             | 
| 181 | 
            -
             | 
| 182 | 
            -
            class GatherLayer(torch.autograd.Function):
         | 
| 183 | 
            -
                """
         | 
| 184 | 
            -
                Gather tensors from all workers with support for backward propagation:
         | 
| 185 | 
            -
                This implementation does not cut the gradients as torch.distributed.all_gather does.
         | 
| 186 | 
            -
                """
         | 
| 187 | 
            -
             | 
| 188 | 
            -
                @staticmethod
         | 
| 189 | 
            -
                def forward(ctx, x):
         | 
| 190 | 
            -
                    output = [
         | 
| 191 | 
            -
                        torch.zeros_like(x) for _ in range(torch.distributed.get_world_size())
         | 
| 192 | 
            -
                    ]
         | 
| 193 | 
            -
                    torch.distributed.all_gather(output, x)
         | 
| 194 | 
            -
                    return tuple(output)
         | 
| 195 | 
            -
             | 
| 196 | 
            -
                @staticmethod
         | 
| 197 | 
            -
                def backward(ctx, *grads):
         | 
| 198 | 
            -
                    all_gradients = torch.stack(grads)
         | 
| 199 | 
            -
                    torch.distributed.all_reduce(all_gradients)
         | 
| 200 | 
            -
                    return all_gradients[torch.distributed.get_rank()]
         | 
| 201 | 
            -
             | 
| 202 | 
            -
             | 
| 203 | 
            -
            def all_gather_with_grad(tensors):
         | 
| 204 | 
            -
                """
         | 
| 205 | 
            -
                Performs all_gather operation on the provided tensors.
         | 
| 206 | 
            -
                Graph remains connected for backward grad computation.
         | 
| 207 | 
            -
                """
         | 
| 208 | 
            -
                # Queue the gathered tensors
         | 
| 209 | 
            -
                world_size = torch.distributed.get_world_size()
         | 
| 210 | 
            -
                # There is no need for reduction in the single-proc case
         | 
| 211 | 
            -
                if world_size == 1:
         | 
| 212 | 
            -
                    return tensors
         | 
| 213 | 
            -
             | 
| 214 | 
            -
                # tensor_all = GatherLayer.apply(tensors)
         | 
| 215 | 
            -
                tensor_all = GatherLayer.apply(tensors)
         | 
| 216 | 
            -
             | 
| 217 | 
            -
                return torch.cat(tensor_all, dim=0)
         | 
| 218 | 
            -
             | 
| 219 | 
            -
             | 
| 220 | 
            -
            @torch.no_grad()
         | 
| 221 | 
            -
            def concat_all_gather(tensor):
         | 
| 222 | 
            -
                """
         | 
| 223 | 
            -
                Performs all_gather operation on the provided tensors.
         | 
| 224 | 
            -
                *** Warning ***: torch.distributed.all_gather has no gradient.
         | 
| 225 | 
            -
                """
         | 
| 226 | 
            -
                # if use distributed training
         | 
| 227 | 
            -
                if not is_dist_avail_and_initialized():
         | 
| 228 | 
            -
                    return tensor
         | 
| 229 | 
            -
             | 
| 230 | 
            -
                tensors_gather = [
         | 
| 231 | 
            -
                    torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size())
         | 
| 232 | 
            -
                ]
         | 
| 233 | 
            -
                torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
         | 
| 234 | 
            -
             | 
| 235 | 
            -
                output = torch.cat(tensors_gather, dim=0)
         | 
| 236 | 
            -
                return output
         | 
| 237 | 
            -
             | 
| 238 | 
            -
             | 
| 239 | 
            -
            def tile(x, dim, n_tile):
         | 
| 240 | 
            -
                init_dim = x.size(dim)
         | 
| 241 | 
            -
                repeat_idx = [1] * x.dim()
         | 
| 242 | 
            -
                repeat_idx[dim] = n_tile
         | 
| 243 | 
            -
                x = x.repeat(*(repeat_idx))
         | 
| 244 | 
            -
                order_index = torch.LongTensor(
         | 
| 245 | 
            -
                    np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)])
         | 
| 246 | 
            -
                )
         | 
| 247 | 
            -
                return torch.index_select(x, dim, order_index.to(x.device))
         | 
|  | |
| 5 | 
             
             For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
         | 
| 6 | 
             
            """
         | 
| 7 |  | 
|  | |
| 8 | 
             
            import os
         | 
| 9 | 
            +
            import logging
         | 
| 10 | 
            +
            import contextlib
         | 
| 11 |  | 
| 12 | 
            +
            from omegaconf import OmegaConf
         | 
| 13 | 
             
            import numpy as np
         | 
| 14 | 
             
            import torch
         | 
| 15 | 
             
            import torch.nn as nn
         | 
| 16 | 
            +
            from transformers import BertTokenizer, LlamaTokenizer
         | 
| 17 | 
            +
            from transformers.models.llama.modeling_llama import LlamaForCausalLM
         | 
| 18 | 
            +
            from peft import (
         | 
| 19 | 
            +
                LoraConfig,
         | 
| 20 | 
            +
                get_peft_model,
         | 
| 21 | 
            +
                prepare_model_for_int8_training,
         | 
| 22 | 
            +
            )
         | 
| 23 | 
            +
             | 
| 24 | 
             
            from minigpt4.common.dist_utils import download_cached_file, is_dist_avail_and_initialized
         | 
| 25 | 
             
            from minigpt4.common.utils import get_abs_path, is_url
         | 
| 26 | 
            +
            from minigpt4.models.eva_vit import create_eva_vit_g
         | 
| 27 | 
            +
             | 
| 28 |  | 
| 29 |  | 
| 30 | 
             
            class BaseModel(nn.Module):
         | 
|  | |
| 35 |  | 
| 36 | 
             
                @property
         | 
| 37 | 
             
                def device(self):
         | 
| 38 | 
            +
                    return list(self.parameters())[-1].device
         | 
| 39 |  | 
| 40 | 
             
                def load_checkpoint(self, url_or_filename):
         | 
| 41 | 
             
                    """
         | 
|  | |
| 128 | 
             
                    else:
         | 
| 129 | 
             
                        return tot
         | 
| 130 |  | 
| 131 | 
            +
                def maybe_autocast(self, dtype=torch.float16):
         | 
| 132 | 
            +
                    # if on cpu, don't use autocast
         | 
| 133 | 
            +
                    # if on gpu, use autocast with dtype if provided, otherwise use torch.float16
         | 
| 134 | 
            +
                    enable_autocast = self.device != torch.device("cpu")
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                    if enable_autocast:
         | 
| 137 | 
            +
                        return torch.cuda.amp.autocast(dtype=dtype)
         | 
| 138 | 
            +
                    else:
         | 
| 139 | 
            +
                        return contextlib.nullcontext()
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                @classmethod
         | 
| 142 | 
            +
                def init_vision_encoder(
         | 
| 143 | 
            +
                    cls, model_name, img_size, drop_path_rate, use_grad_checkpoint, precision, freeze
         | 
| 144 | 
            +
                ):
         | 
| 145 | 
            +
                    logging.info('Loading VIT')
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                    assert model_name == "eva_clip_g", "vit model must be eva_clip_g for current version of MiniGPT-4"
         | 
| 148 | 
            +
                    if not freeze:
         | 
| 149 | 
            +
                        precision = "fp32"  # fp16 is not for training
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                    visual_encoder = create_eva_vit_g(
         | 
| 152 | 
            +
                        img_size, drop_path_rate, use_grad_checkpoint, precision
         | 
| 153 | 
            +
                    )
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                    ln_vision = LayerNorm(visual_encoder.num_features)
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                    if freeze:
         | 
| 158 | 
            +
                        for name, param in visual_encoder.named_parameters():
         | 
| 159 | 
            +
                            param.requires_grad = False
         | 
| 160 | 
            +
                        visual_encoder = visual_encoder.eval()
         | 
| 161 | 
            +
                        visual_encoder.train = disabled_train
         | 
| 162 | 
            +
                        for name, param in ln_vision.named_parameters():
         | 
| 163 | 
            +
                            param.requires_grad = False
         | 
| 164 | 
            +
                        ln_vision = ln_vision.eval()
         | 
| 165 | 
            +
                        ln_vision.train = disabled_train
         | 
| 166 | 
            +
                        logging.info("freeze vision encoder")
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                    logging.info('Loading VIT Done')
         | 
| 169 | 
            +
                    return visual_encoder, ln_vision
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                def init_llm(cls, llama_model_path, low_resource=False, low_res_device=0, lora_r=0,
         | 
| 172 | 
            +
                             lora_target_modules=["q_proj","v_proj"], **lora_kargs):
         | 
| 173 | 
            +
                    logging.info('Loading LLAMA')
         | 
| 174 | 
            +
                    llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model_path, use_fast=False)
         | 
| 175 | 
            +
                    llama_tokenizer.pad_token = "$$"
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                    if low_resource:
         | 
| 178 | 
            +
                        llama_model = LlamaForCausalLM.from_pretrained(
         | 
| 179 | 
            +
                            llama_model_path,
         | 
| 180 | 
            +
                            torch_dtype=torch.float16,
         | 
| 181 | 
            +
                            load_in_8bit=True,
         | 
| 182 | 
            +
                            device_map={'': low_res_device}
         | 
| 183 | 
            +
                        )
         | 
| 184 | 
            +
                    else:
         | 
| 185 | 
            +
                        llama_model = LlamaForCausalLM.from_pretrained(
         | 
| 186 | 
            +
                            llama_model_path,
         | 
| 187 | 
            +
                            torch_dtype=torch.float16,
         | 
| 188 | 
            +
                        )
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                    if lora_r > 0:
         | 
| 191 | 
            +
                        llama_model = prepare_model_for_int8_training(llama_model)
         | 
| 192 | 
            +
                        loraconfig = LoraConfig(
         | 
| 193 | 
            +
                            r=lora_r,
         | 
| 194 | 
            +
                            bias="none",
         | 
| 195 | 
            +
                            task_type="CAUSAL_LM",
         | 
| 196 | 
            +
                            target_modules=lora_target_modules,
         | 
| 197 | 
            +
                            **lora_kargs
         | 
| 198 | 
            +
                        )
         | 
| 199 | 
            +
                        llama_model = get_peft_model(llama_model, loraconfig)
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                        llama_model.print_trainable_parameters()
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                    else:
         | 
| 204 | 
            +
                        for name, param in llama_model.named_parameters():
         | 
| 205 | 
            +
                            param.requires_grad = False
         | 
| 206 | 
            +
                    logging.info('Loading LLAMA Done')
         | 
| 207 | 
            +
                    return llama_model, llama_tokenizer
         | 
| 208 | 
            +
             | 
| 209 | 
            +
             | 
| 210 | 
            +
                def load_from_pretrained(self, url_or_filename):
         | 
| 211 | 
            +
                    if is_url(url_or_filename):
         | 
| 212 | 
            +
                        cached_file = download_cached_file(
         | 
| 213 | 
            +
                            url_or_filename, check_hash=False, progress=True
         | 
| 214 | 
            +
                        )
         | 
| 215 | 
            +
                        checkpoint = torch.load(cached_file, map_location="cpu")
         | 
| 216 | 
            +
                    elif os.path.isfile(url_or_filename):
         | 
| 217 | 
            +
                        checkpoint = torch.load(url_or_filename, map_location="cpu")
         | 
| 218 | 
            +
                    else:
         | 
| 219 | 
            +
                        raise RuntimeError("checkpoint url or path is invalid")
         | 
| 220 | 
            +
             | 
| 221 | 
            +
                    state_dict = checkpoint["model"]
         | 
| 222 | 
            +
             | 
| 223 | 
            +
                    msg = self.load_state_dict(state_dict, strict=False)
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                    # logging.info("Missing keys {}".format(msg.missing_keys))
         | 
| 226 | 
            +
                    logging.info("load checkpoint from %s" % url_or_filename)
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                    return msg
         | 
| 229 | 
            +
             | 
| 230 | 
            +
             | 
| 231 | 
            +
            def disabled_train(self, mode=True):
         | 
| 232 | 
            +
                """Overwrite model.train with this function to make sure train/eval mode
         | 
| 233 | 
            +
                does not change anymore."""
         | 
| 234 | 
            +
                return self
         | 
| 235 | 
            +
             | 
| 236 | 
            +
             | 
| 237 | 
            +
            class LayerNorm(nn.LayerNorm):
         | 
| 238 | 
            +
                """Subclass torch's LayerNorm to handle fp16."""
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                def forward(self, x: torch.Tensor):
         | 
| 241 | 
            +
                    orig_type = x.dtype
         | 
| 242 | 
            +
                    ret = super().forward(x.type(torch.float32))
         | 
| 243 | 
            +
                    return ret.type(orig_type)
         | 
| 244 | 
            +
             | 
| 245 |  | 
|  | |
|  | |
|  | |
|  | |
| 246 |  | 
|  | |
|  | |
| 247 |  | 
|  | |
|  | |
| 248 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        minigpt4/models/minigpt_base.py
    CHANGED
    
    | @@ -7,6 +7,7 @@ import torch.nn as nn | |
| 7 |  | 
| 8 | 
             
            from minigpt4.common.registry import registry
         | 
| 9 | 
             
            from minigpt4.models.base_model import BaseModel
         | 
|  | |
| 10 |  | 
| 11 |  | 
| 12 |  | 
| @@ -365,8 +366,8 @@ class MiniGPTBase(BaseModel): | |
| 365 | 
             
                            do_sample=do_sample,
         | 
| 366 | 
             
                            min_length=min_length,
         | 
| 367 | 
             
                            top_p=top_p,
         | 
| 368 | 
            -
                            repetition_penalty=repetition_penalty
         | 
| 369 | 
            -
                             | 
| 370 | 
             
                        )
         | 
| 371 |  | 
| 372 | 
             
                    answers = []
         | 
|  | |
| 7 |  | 
| 8 | 
             
            from minigpt4.common.registry import registry
         | 
| 9 | 
             
            from minigpt4.models.base_model import BaseModel
         | 
| 10 | 
            +
            from transformers import StoppingCriteria, StoppingCriteriaList
         | 
| 11 |  | 
| 12 |  | 
| 13 |  | 
|  | |
| 366 | 
             
                            do_sample=do_sample,
         | 
| 367 | 
             
                            min_length=min_length,
         | 
| 368 | 
             
                            top_p=top_p,
         | 
| 369 | 
            +
                            repetition_penalty=repetition_penalty,
         | 
| 370 | 
            +
                            stopping_criteria=stopping_criteria,
         | 
| 371 | 
             
                        )
         | 
| 372 |  | 
| 373 | 
             
                    answers = []
         | 
    	
        minigpt4/models/modeling_llama.py
    CHANGED
    
    | @@ -1,628 +1,17 @@ | |
| 1 | 
            -
            # This script is based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
         | 
| 2 | 
            -
             | 
| 3 | 
            -
            """ PyTorch LLaMA model."""
         | 
| 4 | 
             
            import math
         | 
| 5 | 
             
            from typing import List, Optional, Tuple, Union
         | 
| 6 |  | 
| 7 | 
             
            import torch
         | 
| 8 | 
            -
            import torch. | 
| 9 | 
            -
            from torch import  | 
| 10 | 
            -
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
         | 
| 11 | 
            -
             | 
| 12 | 
            -
            from transformers.activations import ACT2FN
         | 
| 13 | 
            -
            from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
         | 
| 14 | 
            -
            from transformers.modeling_utils import PreTrainedModel
         | 
| 15 | 
            -
            from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
         | 
| 16 | 
            -
            from transformers.models.llama.configuration_llama import LlamaConfig
         | 
| 17 | 
            -
             | 
| 18 | 
            -
             | 
| 19 | 
            -
            logger = logging.get_logger(__name__)
         | 
| 20 | 
            -
             | 
| 21 | 
            -
            _CONFIG_FOR_DOC = "LlamaConfig"
         | 
| 22 | 
            -
             | 
| 23 | 
            -
             | 
| 24 | 
            -
            # Copied from transformers.models.bart.modeling_bart._make_causal_mask
         | 
| 25 | 
            -
            def _make_causal_mask(
         | 
| 26 | 
            -
                input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
         | 
| 27 | 
            -
            ):
         | 
| 28 | 
            -
                """
         | 
| 29 | 
            -
                Make causal mask used for bi-directional self-attention.
         | 
| 30 | 
            -
                """
         | 
| 31 | 
            -
                bsz, tgt_len = input_ids_shape
         | 
| 32 | 
            -
                mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
         | 
| 33 | 
            -
                mask_cond = torch.arange(mask.size(-1), device=device)
         | 
| 34 | 
            -
                mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
         | 
| 35 | 
            -
                mask = mask.to(dtype)
         | 
| 36 | 
            -
             | 
| 37 | 
            -
                if past_key_values_length > 0:
         | 
| 38 | 
            -
                    mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
         | 
| 39 | 
            -
                return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
         | 
| 40 | 
            -
             | 
| 41 | 
            -
             | 
| 42 | 
            -
            # Copied from transformers.models.bart.modeling_bart._expand_mask
         | 
| 43 | 
            -
            def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
         | 
| 44 | 
            -
                """
         | 
| 45 | 
            -
                Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
         | 
| 46 | 
            -
                """
         | 
| 47 | 
            -
                bsz, src_len = mask.size()
         | 
| 48 | 
            -
                tgt_len = tgt_len if tgt_len is not None else src_len
         | 
| 49 | 
            -
             | 
| 50 | 
            -
                expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
         | 
| 51 | 
            -
             | 
| 52 | 
            -
                inverted_mask = 1.0 - expanded_mask
         | 
| 53 | 
            -
             | 
| 54 | 
            -
                return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
         | 
| 55 | 
            -
             | 
| 56 | 
            -
             | 
| 57 | 
            -
            class LlamaRMSNorm(nn.Module):
         | 
| 58 | 
            -
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 59 | 
            -
                    """
         | 
| 60 | 
            -
                    LlamaRMSNorm is equivalent to T5LayerNorm
         | 
| 61 | 
            -
                    """
         | 
| 62 | 
            -
                    super().__init__()
         | 
| 63 | 
            -
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 64 | 
            -
                    self.variance_epsilon = eps
         | 
| 65 | 
            -
             | 
| 66 | 
            -
                def forward(self, hidden_states):
         | 
| 67 | 
            -
                    variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
         | 
| 68 | 
            -
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 69 | 
            -
             | 
| 70 | 
            -
                    # convert into half-precision if necessary
         | 
| 71 | 
            -
                    if self.weight.dtype in [torch.float16, torch.bfloat16]:
         | 
| 72 | 
            -
                        hidden_states = hidden_states.to(self.weight.dtype)
         | 
| 73 | 
            -
             | 
| 74 | 
            -
                    return self.weight * hidden_states
         | 
| 75 | 
            -
             | 
| 76 | 
            -
             | 
| 77 | 
            -
            class LlamaRotaryEmbedding(torch.nn.Module):
         | 
| 78 | 
            -
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
         | 
| 79 | 
            -
                    super().__init__()
         | 
| 80 | 
            -
                    inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
         | 
| 81 | 
            -
                    self.register_buffer("inv_freq", inv_freq)
         | 
| 82 | 
            -
             | 
| 83 | 
            -
                    # Build here to make `torch.jit.trace` work.
         | 
| 84 | 
            -
                    self.max_seq_len_cached = max_position_embeddings
         | 
| 85 | 
            -
                    t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
         | 
| 86 | 
            -
                    freqs = torch.einsum("i,j->ij", t, self.inv_freq)
         | 
| 87 | 
            -
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 88 | 
            -
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 89 | 
            -
                    self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
         | 
| 90 | 
            -
                    self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
         | 
| 91 | 
            -
             | 
| 92 | 
            -
                def forward(self, x, seq_len=None):
         | 
| 93 | 
            -
                    # x: [bs, num_attention_heads, seq_len, head_size]
         | 
| 94 | 
            -
                    # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
         | 
| 95 | 
            -
                    if seq_len > self.max_seq_len_cached:
         | 
| 96 | 
            -
                        self.max_seq_len_cached = seq_len
         | 
| 97 | 
            -
                        t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
         | 
| 98 | 
            -
                        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
         | 
| 99 | 
            -
                        # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 100 | 
            -
                        emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
         | 
| 101 | 
            -
                        self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
         | 
| 102 | 
            -
                        self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
         | 
| 103 | 
            -
                    return (
         | 
| 104 | 
            -
                        self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
         | 
| 105 | 
            -
                        self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
         | 
| 106 | 
            -
                    )
         | 
| 107 | 
            -
             | 
| 108 | 
            -
             | 
| 109 | 
            -
            def rotate_half(x):
         | 
| 110 | 
            -
                """Rotates half the hidden dims of the input."""
         | 
| 111 | 
            -
                x1 = x[..., : x.shape[-1] // 2]
         | 
| 112 | 
            -
                x2 = x[..., x.shape[-1] // 2 :]
         | 
| 113 | 
            -
                return torch.cat((-x2, x1), dim=-1)
         | 
| 114 | 
            -
             | 
| 115 | 
            -
             | 
| 116 | 
            -
            def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
         | 
| 117 | 
            -
                gather_indices = position_ids[:, None, :, None]  # [bs, 1, seq_len, 1]
         | 
| 118 | 
            -
                gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
         | 
| 119 | 
            -
                cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
         | 
| 120 | 
            -
                sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
         | 
| 121 | 
            -
                q_embed = (q * cos) + (rotate_half(q) * sin)
         | 
| 122 | 
            -
                k_embed = (k * cos) + (rotate_half(k) * sin)
         | 
| 123 | 
            -
                return q_embed, k_embed
         | 
| 124 | 
            -
             | 
| 125 | 
            -
             | 
| 126 | 
            -
            class LlamaMLP(nn.Module):
         | 
| 127 | 
            -
                def __init__(
         | 
| 128 | 
            -
                    self,
         | 
| 129 | 
            -
                    hidden_size: int,
         | 
| 130 | 
            -
                    intermediate_size: int,
         | 
| 131 | 
            -
                    hidden_act: str,
         | 
| 132 | 
            -
                ):
         | 
| 133 | 
            -
                    super().__init__()
         | 
| 134 | 
            -
                    self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
         | 
| 135 | 
            -
                    self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
         | 
| 136 | 
            -
                    self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
         | 
| 137 | 
            -
                    self.act_fn = ACT2FN[hidden_act]
         | 
| 138 | 
            -
             | 
| 139 | 
            -
                def forward(self, x):
         | 
| 140 | 
            -
                    return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
         | 
| 141 | 
            -
             | 
| 142 | 
            -
             | 
| 143 | 
            -
            class LlamaAttention(nn.Module):
         | 
| 144 | 
            -
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         | 
| 145 | 
            -
             | 
| 146 | 
            -
                def __init__(self, config: LlamaConfig):
         | 
| 147 | 
            -
                    super().__init__()
         | 
| 148 | 
            -
                    self.config = config
         | 
| 149 | 
            -
                    self.hidden_size = config.hidden_size
         | 
| 150 | 
            -
                    self.num_heads = config.num_attention_heads
         | 
| 151 | 
            -
                    self.head_dim = self.hidden_size // self.num_heads
         | 
| 152 | 
            -
                    self.max_position_embeddings = config.max_position_embeddings
         | 
| 153 | 
            -
             | 
| 154 | 
            -
                    if (self.head_dim * self.num_heads) != self.hidden_size:
         | 
| 155 | 
            -
                        raise ValueError(
         | 
| 156 | 
            -
                            f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
         | 
| 157 | 
            -
                            f" and `num_heads`: {self.num_heads})."
         | 
| 158 | 
            -
                        )
         | 
| 159 | 
            -
                    self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
         | 
| 160 | 
            -
                    self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
         | 
| 161 | 
            -
                    self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
         | 
| 162 | 
            -
                    self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
         | 
| 163 | 
            -
                    self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
         | 
| 164 | 
            -
             | 
| 165 | 
            -
                def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
         | 
| 166 | 
            -
                    return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
         | 
| 167 | 
            -
             | 
| 168 | 
            -
                def forward(
         | 
| 169 | 
            -
                    self,
         | 
| 170 | 
            -
                    hidden_states: torch.Tensor,
         | 
| 171 | 
            -
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 172 | 
            -
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 173 | 
            -
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 174 | 
            -
                    output_attentions: bool = False,
         | 
| 175 | 
            -
                    use_cache: bool = False,
         | 
| 176 | 
            -
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 177 | 
            -
                    bsz, q_len, _ = hidden_states.size()
         | 
| 178 | 
            -
             | 
| 179 | 
            -
                    query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 180 | 
            -
                    key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 181 | 
            -
                    value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 182 | 
            -
             | 
| 183 | 
            -
                    kv_seq_len = key_states.shape[-2]
         | 
| 184 | 
            -
                    if past_key_value is not None:
         | 
| 185 | 
            -
                        kv_seq_len += past_key_value[0].shape[-2]
         | 
| 186 | 
            -
                    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 187 | 
            -
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 188 | 
            -
                    # [bsz, nh, t, hd]
         | 
| 189 | 
            -
             | 
| 190 | 
            -
                    if past_key_value is not None:
         | 
| 191 | 
            -
                        # reuse k, v, self_attention
         | 
| 192 | 
            -
                        key_states = torch.cat([past_key_value[0], key_states], dim=2)
         | 
| 193 | 
            -
                        value_states = torch.cat([past_key_value[1], value_states], dim=2)
         | 
| 194 | 
            -
             | 
| 195 | 
            -
                    past_key_value = (key_states, value_states) if use_cache else None
         | 
| 196 | 
            -
             | 
| 197 | 
            -
                    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
         | 
| 198 | 
            -
             | 
| 199 | 
            -
                    if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
         | 
| 200 | 
            -
                        raise ValueError(
         | 
| 201 | 
            -
                            f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
         | 
| 202 | 
            -
                            f" {attn_weights.size()}"
         | 
| 203 | 
            -
                        )
         | 
| 204 | 
            -
             | 
| 205 | 
            -
                    if attention_mask is not None:
         | 
| 206 | 
            -
                        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
         | 
| 207 | 
            -
                            raise ValueError(
         | 
| 208 | 
            -
                                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
         | 
| 209 | 
            -
                            )
         | 
| 210 | 
            -
                        attn_weights = attn_weights + attention_mask
         | 
| 211 | 
            -
                        attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
         | 
| 212 | 
            -
             | 
| 213 | 
            -
                    # upcast attention to fp32
         | 
| 214 | 
            -
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
         | 
| 215 | 
            -
                    attn_output = torch.matmul(attn_weights, value_states)
         | 
| 216 | 
            -
             | 
| 217 | 
            -
                    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
         | 
| 218 | 
            -
                        raise ValueError(
         | 
| 219 | 
            -
                            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
         | 
| 220 | 
            -
                            f" {attn_output.size()}"
         | 
| 221 | 
            -
                        )
         | 
| 222 | 
            -
             | 
| 223 | 
            -
                    attn_output = attn_output.transpose(1, 2)
         | 
| 224 | 
            -
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
         | 
| 225 | 
            -
             | 
| 226 | 
            -
                    attn_output = self.o_proj(attn_output)
         | 
| 227 | 
            -
             | 
| 228 | 
            -
                    if not output_attentions:
         | 
| 229 | 
            -
                        attn_weights = None
         | 
| 230 | 
            -
             | 
| 231 | 
            -
                    return attn_output, attn_weights, past_key_value
         | 
| 232 | 
            -
             | 
| 233 | 
            -
             | 
| 234 | 
            -
            class LlamaDecoderLayer(nn.Module):
         | 
| 235 | 
            -
                def __init__(self, config: LlamaConfig):
         | 
| 236 | 
            -
                    super().__init__()
         | 
| 237 | 
            -
                    self.hidden_size = config.hidden_size
         | 
| 238 | 
            -
                    self.self_attn = LlamaAttention(config=config)
         | 
| 239 | 
            -
                    self.mlp = LlamaMLP(
         | 
| 240 | 
            -
                        hidden_size=self.hidden_size,
         | 
| 241 | 
            -
                        intermediate_size=config.intermediate_size,
         | 
| 242 | 
            -
                        hidden_act=config.hidden_act,
         | 
| 243 | 
            -
                    )
         | 
| 244 | 
            -
                    self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 245 | 
            -
                    self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 246 | 
            -
             | 
| 247 | 
            -
                def forward(
         | 
| 248 | 
            -
                    self,
         | 
| 249 | 
            -
                    hidden_states: torch.Tensor,
         | 
| 250 | 
            -
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 251 | 
            -
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 252 | 
            -
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 253 | 
            -
                    output_attentions: Optional[bool] = False,
         | 
| 254 | 
            -
                    use_cache: Optional[bool] = False,
         | 
| 255 | 
            -
                ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         | 
| 256 | 
            -
                    """
         | 
| 257 | 
            -
                    Args:
         | 
| 258 | 
            -
                        hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 259 | 
            -
                        attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
         | 
| 260 | 
            -
                            `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
         | 
| 261 | 
            -
                        output_attentions (`bool`, *optional*):
         | 
| 262 | 
            -
                            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         | 
| 263 | 
            -
                            returned tensors for more detail.
         | 
| 264 | 
            -
                        use_cache (`bool`, *optional*):
         | 
| 265 | 
            -
                            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
         | 
| 266 | 
            -
                            (see `past_key_values`).
         | 
| 267 | 
            -
                        past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
         | 
| 268 | 
            -
                    """
         | 
| 269 | 
            -
             | 
| 270 | 
            -
                    residual = hidden_states
         | 
| 271 | 
            -
             | 
| 272 | 
            -
                    hidden_states = self.input_layernorm(hidden_states)
         | 
| 273 | 
            -
             | 
| 274 | 
            -
                    # Self Attention
         | 
| 275 | 
            -
                    hidden_states, self_attn_weights, present_key_value = self.self_attn(
         | 
| 276 | 
            -
                        hidden_states=hidden_states,
         | 
| 277 | 
            -
                        attention_mask=attention_mask,
         | 
| 278 | 
            -
                        position_ids=position_ids,
         | 
| 279 | 
            -
                        past_key_value=past_key_value,
         | 
| 280 | 
            -
                        output_attentions=output_attentions,
         | 
| 281 | 
            -
                        use_cache=use_cache,
         | 
| 282 | 
            -
                    )
         | 
| 283 | 
            -
                    hidden_states = residual + hidden_states
         | 
| 284 | 
            -
             | 
| 285 | 
            -
                    # Fully Connected
         | 
| 286 | 
            -
                    residual = hidden_states
         | 
| 287 | 
            -
                    hidden_states = self.post_attention_layernorm(hidden_states)
         | 
| 288 | 
            -
                    hidden_states = self.mlp(hidden_states)
         | 
| 289 | 
            -
                    hidden_states = residual + hidden_states
         | 
| 290 | 
            -
             | 
| 291 | 
            -
                    outputs = (hidden_states,)
         | 
| 292 | 
            -
             | 
| 293 | 
            -
                    if output_attentions:
         | 
| 294 | 
            -
                        outputs += (self_attn_weights,)
         | 
| 295 | 
            -
             | 
| 296 | 
            -
                    if use_cache:
         | 
| 297 | 
            -
                        outputs += (present_key_value,)
         | 
| 298 | 
            -
             | 
| 299 | 
            -
                    return outputs
         | 
| 300 | 
            -
             | 
| 301 | 
            -
             | 
| 302 | 
            -
            LLAMA_START_DOCSTRING = r"""
         | 
| 303 | 
            -
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         | 
| 304 | 
            -
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         | 
| 305 | 
            -
                etc.)
         | 
| 306 | 
            -
             | 
| 307 | 
            -
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         | 
| 308 | 
            -
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         | 
| 309 | 
            -
                and behavior.
         | 
| 310 | 
            -
             | 
| 311 | 
            -
                Parameters:
         | 
| 312 | 
            -
                    config ([`LlamaConfig`]):
         | 
| 313 | 
            -
                        Model configuration class with all the parameters of the model. Initializing with a config file does not
         | 
| 314 | 
            -
                        load the weights associated with the model, only the configuration. Check out the
         | 
| 315 | 
            -
                        [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         | 
| 316 | 
            -
            """
         | 
| 317 | 
            -
             | 
| 318 | 
            -
             | 
| 319 | 
            -
            @add_start_docstrings(
         | 
| 320 | 
            -
                "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
         | 
| 321 | 
            -
                LLAMA_START_DOCSTRING,
         | 
| 322 | 
            -
            )
         | 
| 323 | 
            -
            class LlamaPreTrainedModel(PreTrainedModel):
         | 
| 324 | 
            -
                config_class = LlamaConfig
         | 
| 325 | 
            -
                base_model_prefix = "model"
         | 
| 326 | 
            -
                supports_gradient_checkpointing = True
         | 
| 327 | 
            -
                _no_split_modules = ["LlamaDecoderLayer"]
         | 
| 328 | 
            -
                _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
         | 
| 329 | 
            -
             | 
| 330 | 
            -
                def _init_weights(self, module):
         | 
| 331 | 
            -
                    std = self.config.initializer_range
         | 
| 332 | 
            -
                    if isinstance(module, nn.Linear):
         | 
| 333 | 
            -
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 334 | 
            -
                        if module.bias is not None:
         | 
| 335 | 
            -
                            module.bias.data.zero_()
         | 
| 336 | 
            -
                    elif isinstance(module, nn.Embedding):
         | 
| 337 | 
            -
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 338 | 
            -
                        if module.padding_idx is not None:
         | 
| 339 | 
            -
                            module.weight.data[module.padding_idx].zero_()
         | 
| 340 | 
            -
             | 
| 341 | 
            -
                def _set_gradient_checkpointing(self, module, value=False):
         | 
| 342 | 
            -
                    if isinstance(module, LlamaModel):
         | 
| 343 | 
            -
                        module.gradient_checkpointing = value
         | 
| 344 | 
            -
             | 
| 345 |  | 
| 346 | 
            -
             | 
| 347 | 
            -
             | 
| 348 | 
            -
             | 
| 349 | 
            -
             | 
| 350 | 
            -
                        it.
         | 
| 351 |  | 
| 352 | 
            -
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 353 | 
            -
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 354 |  | 
| 355 | 
            -
             | 
| 356 | 
            -
                    attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 357 | 
            -
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         | 
| 358 | 
            -
             | 
| 359 | 
            -
                        - 1 for tokens that are **not masked**,
         | 
| 360 | 
            -
                        - 0 for tokens that are **masked**.
         | 
| 361 | 
            -
             | 
| 362 | 
            -
                        [What are attention masks?](../glossary#attention-mask)
         | 
| 363 | 
            -
             | 
| 364 | 
            -
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 365 | 
            -
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 366 | 
            -
             | 
| 367 | 
            -
                        If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
         | 
| 368 | 
            -
                        `past_key_values`).
         | 
| 369 | 
            -
             | 
| 370 | 
            -
                        If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
         | 
| 371 | 
            -
                        and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
         | 
| 372 | 
            -
                        information on the default strategy.
         | 
| 373 | 
            -
             | 
| 374 | 
            -
                        - 1 indicates the head is **not masked**,
         | 
| 375 | 
            -
                        - 0 indicates the head is **masked**.
         | 
| 376 | 
            -
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 377 | 
            -
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         | 
| 378 | 
            -
                        config.n_positions - 1]`.
         | 
| 379 | 
            -
             | 
| 380 | 
            -
                        [What are position IDs?](../glossary#position-ids)
         | 
| 381 | 
            -
                    past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
         | 
| 382 | 
            -
                        Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
         | 
| 383 | 
            -
                        `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
         | 
| 384 | 
            -
                        `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
         | 
| 385 | 
            -
             | 
| 386 | 
            -
                        Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
         | 
| 387 | 
            -
                        blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
         | 
| 388 | 
            -
             | 
| 389 | 
            -
                        If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
         | 
| 390 | 
            -
                        don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
         | 
| 391 | 
            -
                        `decoder_input_ids` of shape `(batch_size, sequence_length)`.
         | 
| 392 | 
            -
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         | 
| 393 | 
            -
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         | 
| 394 | 
            -
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         | 
| 395 | 
            -
                        model's internal embedding lookup matrix.
         | 
| 396 | 
            -
                    use_cache (`bool`, *optional*):
         | 
| 397 | 
            -
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         | 
| 398 | 
            -
                        `past_key_values`).
         | 
| 399 | 
            -
                    output_attentions (`bool`, *optional*):
         | 
| 400 | 
            -
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         | 
| 401 | 
            -
                        tensors for more detail.
         | 
| 402 | 
            -
                    output_hidden_states (`bool`, *optional*):
         | 
| 403 | 
            -
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         | 
| 404 | 
            -
                        more detail.
         | 
| 405 | 
            -
                    return_dict (`bool`, *optional*):
         | 
| 406 | 
            -
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 407 | 
            -
            """
         | 
| 408 | 
            -
             | 
| 409 | 
            -
             | 
| 410 | 
            -
            @add_start_docstrings(
         | 
| 411 | 
            -
                "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
         | 
| 412 | 
            -
                LLAMA_START_DOCSTRING,
         | 
| 413 | 
            -
            )
         | 
| 414 | 
            -
            class LlamaModel(LlamaPreTrainedModel):
         | 
| 415 | 
            -
                """
         | 
| 416 | 
            -
                Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
         | 
| 417 | 
            -
             | 
| 418 | 
            -
                Args:
         | 
| 419 | 
            -
                    config: LlamaConfig
         | 
| 420 | 
            -
                """
         | 
| 421 | 
            -
             | 
| 422 | 
            -
                def __init__(self, config: LlamaConfig):
         | 
| 423 | 
            -
                    super().__init__(config)
         | 
| 424 | 
            -
                    self.padding_idx = config.pad_token_id
         | 
| 425 | 
            -
                    self.vocab_size = config.vocab_size
         | 
| 426 | 
            -
             | 
| 427 | 
            -
                    self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
         | 
| 428 | 
            -
                    self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
         | 
| 429 | 
            -
                    self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 430 | 
            -
             | 
| 431 | 
            -
                    self.gradient_checkpointing = False
         | 
| 432 | 
            -
                    # Initialize weights and apply final processing
         | 
| 433 | 
            -
                    self.post_init()
         | 
| 434 | 
            -
             | 
| 435 | 
            -
                def get_input_embeddings(self):
         | 
| 436 | 
            -
                    return self.embed_tokens
         | 
| 437 | 
            -
             | 
| 438 | 
            -
                def set_input_embeddings(self, value):
         | 
| 439 | 
            -
                    self.embed_tokens = value
         | 
| 440 | 
            -
             | 
| 441 | 
            -
                # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
         | 
| 442 | 
            -
                def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
         | 
| 443 | 
            -
                    # create causal mask
         | 
| 444 | 
            -
                    # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
         | 
| 445 | 
            -
                    combined_attention_mask = None
         | 
| 446 | 
            -
                    if input_shape[-1] > 1:
         | 
| 447 | 
            -
                        combined_attention_mask = _make_causal_mask(
         | 
| 448 | 
            -
                            input_shape,
         | 
| 449 | 
            -
                            inputs_embeds.dtype,
         | 
| 450 | 
            -
                            device=inputs_embeds.device,
         | 
| 451 | 
            -
                            past_key_values_length=past_key_values_length,
         | 
| 452 | 
            -
                        )
         | 
| 453 | 
            -
             | 
| 454 | 
            -
                    if attention_mask is not None:
         | 
| 455 | 
            -
                        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
         | 
| 456 | 
            -
                        expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
         | 
| 457 | 
            -
                            inputs_embeds.device
         | 
| 458 | 
            -
                        )
         | 
| 459 | 
            -
                        combined_attention_mask = (
         | 
| 460 | 
            -
                            expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
         | 
| 461 | 
            -
                        )
         | 
| 462 | 
            -
             | 
| 463 | 
            -
                    return combined_attention_mask
         | 
| 464 | 
            -
             | 
| 465 | 
            -
                @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
         | 
| 466 | 
            -
                def forward(
         | 
| 467 | 
            -
                    self,
         | 
| 468 | 
            -
                    input_ids: torch.LongTensor = None,
         | 
| 469 | 
            -
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 470 | 
            -
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 471 | 
            -
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 472 | 
            -
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 473 | 
            -
                    query_embeds: Optional[torch.FloatTensor] = None,
         | 
| 474 | 
            -
                    use_cache: Optional[bool] = None,
         | 
| 475 | 
            -
                    output_attentions: Optional[bool] = None,
         | 
| 476 | 
            -
                    output_hidden_states: Optional[bool] = None,
         | 
| 477 | 
            -
                    return_dict: Optional[bool] = None,
         | 
| 478 | 
            -
                ) -> Union[Tuple, BaseModelOutputWithPast]:
         | 
| 479 | 
            -
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 480 | 
            -
                    output_hidden_states = (
         | 
| 481 | 
            -
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 482 | 
            -
                    )
         | 
| 483 | 
            -
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 484 | 
            -
             | 
| 485 | 
            -
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 486 | 
            -
             | 
| 487 | 
            -
                    # retrieve input_ids and inputs_embeds
         | 
| 488 | 
            -
                    if input_ids is not None and inputs_embeds is not None:
         | 
| 489 | 
            -
                        raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
         | 
| 490 | 
            -
                    elif input_ids is not None:
         | 
| 491 | 
            -
                        batch_size, seq_length = input_ids.shape
         | 
| 492 | 
            -
                    elif inputs_embeds is not None:
         | 
| 493 | 
            -
                        batch_size, seq_length, _ = inputs_embeds.shape
         | 
| 494 | 
            -
                    else:
         | 
| 495 | 
            -
                        raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
         | 
| 496 | 
            -
             | 
| 497 | 
            -
                    if inputs_embeds is None:
         | 
| 498 | 
            -
                        inputs_embeds = self.embed_tokens(input_ids)
         | 
| 499 | 
            -
                    if query_embeds is not None:
         | 
| 500 | 
            -
                        inputs_embeds = torch.cat([query_embeds, inputs_embeds], dim=1)
         | 
| 501 | 
            -
                        batch_size, seq_length, _ = inputs_embeds.shape
         | 
| 502 | 
            -
             | 
| 503 | 
            -
                    seq_length_with_past = seq_length
         | 
| 504 | 
            -
                    past_key_values_length = 0
         | 
| 505 | 
            -
             | 
| 506 | 
            -
                    if past_key_values is not None:
         | 
| 507 | 
            -
                        past_key_values_length = past_key_values[0][0].shape[2]
         | 
| 508 | 
            -
                        seq_length_with_past = seq_length_with_past + past_key_values_length
         | 
| 509 | 
            -
             | 
| 510 | 
            -
                    if position_ids is None:
         | 
| 511 | 
            -
                        device = input_ids.device if input_ids is not None else inputs_embeds.device
         | 
| 512 | 
            -
                        position_ids = torch.arange(
         | 
| 513 | 
            -
                            past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
         | 
| 514 | 
            -
                        )
         | 
| 515 | 
            -
                        position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
         | 
| 516 | 
            -
                    else:
         | 
| 517 | 
            -
                        position_ids = position_ids.view(-1, seq_length).long()
         | 
| 518 | 
            -
             | 
| 519 | 
            -
                    # embed positions
         | 
| 520 | 
            -
                    if attention_mask is None:
         | 
| 521 | 
            -
                        attention_mask = torch.ones(
         | 
| 522 | 
            -
                            (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
         | 
| 523 | 
            -
                        )
         | 
| 524 | 
            -
                    attention_mask = self._prepare_decoder_attention_mask(
         | 
| 525 | 
            -
                        attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
         | 
| 526 | 
            -
                    )
         | 
| 527 | 
            -
             | 
| 528 | 
            -
                    hidden_states = inputs_embeds
         | 
| 529 | 
            -
             | 
| 530 | 
            -
                    if self.gradient_checkpointing and self.training:
         | 
| 531 | 
            -
                        if use_cache:
         | 
| 532 | 
            -
                            logger.warning_once(
         | 
| 533 | 
            -
                                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         | 
| 534 | 
            -
                            )
         | 
| 535 | 
            -
                            use_cache = False
         | 
| 536 | 
            -
             | 
| 537 | 
            -
                    # decoder layers
         | 
| 538 | 
            -
                    all_hidden_states = () if output_hidden_states else None
         | 
| 539 | 
            -
                    all_self_attns = () if output_attentions else None
         | 
| 540 | 
            -
                    next_decoder_cache = () if use_cache else None
         | 
| 541 | 
            -
             | 
| 542 | 
            -
                    for idx, decoder_layer in enumerate(self.layers):
         | 
| 543 | 
            -
                        if output_hidden_states:
         | 
| 544 | 
            -
                            all_hidden_states += (hidden_states,)
         | 
| 545 | 
            -
             | 
| 546 | 
            -
                        past_key_value = past_key_values[idx] if past_key_values is not None else None
         | 
| 547 | 
            -
             | 
| 548 | 
            -
                        if self.gradient_checkpointing and self.training:
         | 
| 549 | 
            -
             | 
| 550 | 
            -
                            def create_custom_forward(module):
         | 
| 551 | 
            -
                                def custom_forward(*inputs):
         | 
| 552 | 
            -
                                    # None for past_key_value
         | 
| 553 | 
            -
                                    return module(*inputs, output_attentions, None)
         | 
| 554 | 
            -
             | 
| 555 | 
            -
                                return custom_forward
         | 
| 556 | 
            -
             | 
| 557 | 
            -
                            layer_outputs = torch.utils.checkpoint.checkpoint(
         | 
| 558 | 
            -
                                create_custom_forward(decoder_layer),
         | 
| 559 | 
            -
                                hidden_states,
         | 
| 560 | 
            -
                                attention_mask,
         | 
| 561 | 
            -
                                position_ids,
         | 
| 562 | 
            -
                                None,
         | 
| 563 | 
            -
                            )
         | 
| 564 | 
            -
                        else:
         | 
| 565 | 
            -
                            layer_outputs = decoder_layer(
         | 
| 566 | 
            -
                                hidden_states,
         | 
| 567 | 
            -
                                attention_mask=attention_mask,
         | 
| 568 | 
            -
                                position_ids=position_ids,
         | 
| 569 | 
            -
                                past_key_value=past_key_value,
         | 
| 570 | 
            -
                                output_attentions=output_attentions,
         | 
| 571 | 
            -
                                use_cache=use_cache,
         | 
| 572 | 
            -
                            )
         | 
| 573 | 
            -
             | 
| 574 | 
            -
                        hidden_states = layer_outputs[0]
         | 
| 575 | 
            -
             | 
| 576 | 
            -
                        if use_cache:
         | 
| 577 | 
            -
                            next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
         | 
| 578 | 
            -
             | 
| 579 | 
            -
                        if output_attentions:
         | 
| 580 | 
            -
                            all_self_attns += (layer_outputs[1],)
         | 
| 581 | 
            -
             | 
| 582 | 
            -
                    hidden_states = self.norm(hidden_states)
         | 
| 583 | 
            -
             | 
| 584 | 
            -
                    # add hidden states from the last decoder layer
         | 
| 585 | 
            -
                    if output_hidden_states:
         | 
| 586 | 
            -
                        all_hidden_states += (hidden_states,)
         | 
| 587 | 
            -
             | 
| 588 | 
            -
                    next_cache = next_decoder_cache if use_cache else None
         | 
| 589 | 
            -
                    if not return_dict:
         | 
| 590 | 
            -
                        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
         | 
| 591 | 
            -
                    return BaseModelOutputWithPast(
         | 
| 592 | 
            -
                        last_hidden_state=hidden_states,
         | 
| 593 | 
            -
                        past_key_values=next_cache,
         | 
| 594 | 
            -
                        hidden_states=all_hidden_states,
         | 
| 595 | 
            -
                        attentions=all_self_attns,
         | 
| 596 | 
            -
                    )
         | 
| 597 | 
            -
             | 
| 598 | 
            -
             | 
| 599 | 
            -
            class LlamaForCausalLM(LlamaPreTrainedModel):
         | 
| 600 | 
            -
                def __init__(self, config):
         | 
| 601 | 
            -
                    super().__init__(config)
         | 
| 602 | 
            -
                    self.model = LlamaModel(config)
         | 
| 603 | 
            -
             | 
| 604 | 
            -
                    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 605 | 
            -
             | 
| 606 | 
            -
                    # Initialize weights and apply final processing
         | 
| 607 | 
            -
                    self.post_init()
         | 
| 608 | 
            -
             | 
| 609 | 
            -
                def get_input_embeddings(self):
         | 
| 610 | 
            -
                    return self.model.embed_tokens
         | 
| 611 | 
            -
             | 
| 612 | 
            -
                def set_input_embeddings(self, value):
         | 
| 613 | 
            -
                    self.model.embed_tokens = value
         | 
| 614 | 
            -
             | 
| 615 | 
            -
                def get_output_embeddings(self):
         | 
| 616 | 
            -
                    return self.lm_head
         | 
| 617 | 
            -
             | 
| 618 | 
            -
                def set_output_embeddings(self, new_embeddings):
         | 
| 619 | 
            -
                    self.lm_head = new_embeddings
         | 
| 620 | 
            -
             | 
| 621 | 
            -
                def set_decoder(self, decoder):
         | 
| 622 | 
            -
                    self.model = decoder
         | 
| 623 | 
            -
             | 
| 624 | 
            -
                def get_decoder(self):
         | 
| 625 | 
            -
                    return self.model
         | 
| 626 |  | 
| 627 | 
             
                @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
         | 
| 628 | 
             
                @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
         | 
| @@ -633,12 +22,12 @@ class LlamaForCausalLM(LlamaPreTrainedModel): | |
| 633 | 
             
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 634 | 
             
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 635 | 
             
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 636 | 
            -
                    query_embeds: Optional[torch.FloatTensor] = None,
         | 
| 637 | 
             
                    labels: Optional[torch.LongTensor] = None,
         | 
| 638 | 
             
                    use_cache: Optional[bool] = None,
         | 
| 639 | 
             
                    output_attentions: Optional[bool] = None,
         | 
| 640 | 
             
                    output_hidden_states: Optional[bool] = None,
         | 
| 641 | 
             
                    return_dict: Optional[bool] = None,
         | 
|  | |
| 642 | 
             
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         | 
| 643 | 
             
                    r"""
         | 
| 644 | 
             
                    Args:
         | 
| @@ -657,13 +46,13 @@ class LlamaForCausalLM(LlamaPreTrainedModel): | |
| 657 | 
             
                    >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
         | 
| 658 | 
             
                    >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
         | 
| 659 |  | 
| 660 | 
            -
                    >>> prompt = "Hey, are you  | 
| 661 | 
             
                    >>> inputs = tokenizer(prompt, return_tensors="pt")
         | 
| 662 |  | 
| 663 | 
             
                    >>> # Generate
         | 
| 664 | 
             
                    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
         | 
| 665 | 
             
                    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         | 
| 666 | 
            -
                    "Hey, are you  | 
| 667 | 
             
                    ```"""
         | 
| 668 |  | 
| 669 | 
             
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| @@ -679,7 +68,6 @@ class LlamaForCausalLM(LlamaPreTrainedModel): | |
| 679 | 
             
                        position_ids=position_ids,
         | 
| 680 | 
             
                        past_key_values=past_key_values,
         | 
| 681 | 
             
                        inputs_embeds=inputs_embeds,
         | 
| 682 | 
            -
                        query_embeds=query_embeds,
         | 
| 683 | 
             
                        use_cache=use_cache,
         | 
| 684 | 
             
                        output_attentions=output_attentions,
         | 
| 685 | 
             
                        output_hidden_states=output_hidden_states,
         | 
| @@ -687,7 +75,13 @@ class LlamaForCausalLM(LlamaPreTrainedModel): | |
| 687 | 
             
                    )
         | 
| 688 |  | 
| 689 | 
             
                    hidden_states = outputs[0]
         | 
| 690 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 691 |  | 
| 692 | 
             
                    loss = None
         | 
| 693 | 
             
                    if labels is not None:
         | 
| @@ -695,12 +89,14 @@ class LlamaForCausalLM(LlamaPreTrainedModel): | |
| 695 | 
             
                        shift_logits = logits[..., :-1, :].contiguous()
         | 
| 696 | 
             
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 697 | 
             
                        # Flatten the tokens
         | 
| 698 | 
            -
                        loss_fct = CrossEntropyLoss()
         | 
| 699 | 
             
                        shift_logits = shift_logits.view(-1, self.config.vocab_size)
         | 
| 700 | 
             
                        shift_labels = shift_labels.view(-1)
         | 
| 701 | 
             
                        # Enable model parallelism
         | 
| 702 | 
             
                        shift_labels = shift_labels.to(shift_logits.device)
         | 
| 703 | 
             
                        loss = loss_fct(shift_logits, shift_labels)
         | 
|  | |
|  | |
| 704 |  | 
| 705 | 
             
                    if not return_dict:
         | 
| 706 | 
             
                        output = (logits,) + outputs[1:]
         | 
| @@ -713,43 +109,3 @@ class LlamaForCausalLM(LlamaPreTrainedModel): | |
| 713 | 
             
                        hidden_states=outputs.hidden_states,
         | 
| 714 | 
             
                        attentions=outputs.attentions,
         | 
| 715 | 
             
                    )
         | 
| 716 | 
            -
             | 
| 717 | 
            -
                def prepare_inputs_for_generation(
         | 
| 718 | 
            -
                    self, input_ids, query_embeds=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
         | 
| 719 | 
            -
                ):
         | 
| 720 | 
            -
                    if past_key_values:
         | 
| 721 | 
            -
                        input_ids = input_ids[:, -1:]
         | 
| 722 | 
            -
             | 
| 723 | 
            -
                    position_ids = kwargs.get("position_ids", None)
         | 
| 724 | 
            -
                    if attention_mask is not None and position_ids is None:
         | 
| 725 | 
            -
                        # create position_ids on the fly for batch generation
         | 
| 726 | 
            -
                        position_ids = attention_mask.long().cumsum(-1) - 1
         | 
| 727 | 
            -
                        position_ids.masked_fill_(attention_mask == 0, 1)
         | 
| 728 | 
            -
                        if past_key_values:
         | 
| 729 | 
            -
                            position_ids = position_ids[:, -1].unsqueeze(-1)
         | 
| 730 | 
            -
                            query_embeds = None
         | 
| 731 | 
            -
             | 
| 732 | 
            -
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         | 
| 733 | 
            -
                    if inputs_embeds is not None and past_key_values is None:
         | 
| 734 | 
            -
                        model_inputs = {"inputs_embeds": inputs_embeds}
         | 
| 735 | 
            -
                    else:
         | 
| 736 | 
            -
                        model_inputs = {"input_ids": input_ids}
         | 
| 737 | 
            -
             | 
| 738 | 
            -
                    model_inputs.update(
         | 
| 739 | 
            -
                        {
         | 
| 740 | 
            -
                            "position_ids": position_ids,
         | 
| 741 | 
            -
                            "query_embeds": query_embeds,
         | 
| 742 | 
            -
                            "past_key_values": past_key_values,
         | 
| 743 | 
            -
                            "use_cache": kwargs.get("use_cache"),
         | 
| 744 | 
            -
                            "attention_mask": attention_mask,
         | 
| 745 | 
            -
                        }
         | 
| 746 | 
            -
                    )
         | 
| 747 | 
            -
                    return model_inputs
         | 
| 748 | 
            -
             | 
| 749 | 
            -
                @staticmethod
         | 
| 750 | 
            -
                def _reorder_cache(past_key_values, beam_idx):
         | 
| 751 | 
            -
                    reordered_past = ()
         | 
| 752 | 
            -
                    for layer_past in past_key_values:
         | 
| 753 | 
            -
                        reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
         | 
| 754 | 
            -
                    return reordered_past
         | 
| 755 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 1 | 
             
            import math
         | 
| 2 | 
             
            from typing import List, Optional, Tuple, Union
         | 
| 3 |  | 
| 4 | 
             
            import torch
         | 
| 5 | 
            +
            import torch.nn.functional as F
         | 
| 6 | 
            +
            from torch.nn import CrossEntropyLoss
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 7 |  | 
| 8 | 
            +
            from transformers.utils import add_start_docstrings_to_model_forward, replace_return_docstrings
         | 
| 9 | 
            +
            from transformers.modeling_outputs import CausalLMOutputWithPast
         | 
| 10 | 
            +
            from transformers.models.llama.modeling_llama import LLAMA_INPUTS_DOCSTRING, _CONFIG_FOR_DOC
         | 
| 11 | 
            +
            from transformers.models.llama.modeling_llama import LlamaForCausalLM as LlamaForCausalLMOrig
         | 
|  | |
| 12 |  | 
|  | |
|  | |
| 13 |  | 
| 14 | 
            +
            class LlamaForCausalLM(LlamaForCausalLMOrig):
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 15 |  | 
| 16 | 
             
                @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
         | 
| 17 | 
             
                @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
         | 
|  | |
| 22 | 
             
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 23 | 
             
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 24 | 
             
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
|  | |
| 25 | 
             
                    labels: Optional[torch.LongTensor] = None,
         | 
| 26 | 
             
                    use_cache: Optional[bool] = None,
         | 
| 27 | 
             
                    output_attentions: Optional[bool] = None,
         | 
| 28 | 
             
                    output_hidden_states: Optional[bool] = None,
         | 
| 29 | 
             
                    return_dict: Optional[bool] = None,
         | 
| 30 | 
            +
                    reduction: Optional[str] = "mean",
         | 
| 31 | 
             
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         | 
| 32 | 
             
                    r"""
         | 
| 33 | 
             
                    Args:
         | 
|  | |
| 46 | 
             
                    >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
         | 
| 47 | 
             
                    >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
         | 
| 48 |  | 
| 49 | 
            +
                    >>> prompt = "Hey, are you conscious? Can you talk to me?"
         | 
| 50 | 
             
                    >>> inputs = tokenizer(prompt, return_tensors="pt")
         | 
| 51 |  | 
| 52 | 
             
                    >>> # Generate
         | 
| 53 | 
             
                    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
         | 
| 54 | 
             
                    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         | 
| 55 | 
            +
                    "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
         | 
| 56 | 
             
                    ```"""
         | 
| 57 |  | 
| 58 | 
             
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
|  | |
| 68 | 
             
                        position_ids=position_ids,
         | 
| 69 | 
             
                        past_key_values=past_key_values,
         | 
| 70 | 
             
                        inputs_embeds=inputs_embeds,
         | 
|  | |
| 71 | 
             
                        use_cache=use_cache,
         | 
| 72 | 
             
                        output_attentions=output_attentions,
         | 
| 73 | 
             
                        output_hidden_states=output_hidden_states,
         | 
|  | |
| 75 | 
             
                    )
         | 
| 76 |  | 
| 77 | 
             
                    hidden_states = outputs[0]
         | 
| 78 | 
            +
                    if self.config.pretraining_tp > 1:
         | 
| 79 | 
            +
                        lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
         | 
| 80 | 
            +
                        logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
         | 
| 81 | 
            +
                        logits = torch.cat(logits, dim=-1)
         | 
| 82 | 
            +
                    else:
         | 
| 83 | 
            +
                        logits = self.lm_head(hidden_states)
         | 
| 84 | 
            +
                    logits = logits.float()
         | 
| 85 |  | 
| 86 | 
             
                    loss = None
         | 
| 87 | 
             
                    if labels is not None:
         | 
|  | |
| 89 | 
             
                        shift_logits = logits[..., :-1, :].contiguous()
         | 
| 90 | 
             
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 91 | 
             
                        # Flatten the tokens
         | 
| 92 | 
            +
                        loss_fct = CrossEntropyLoss(reduction=reduction)
         | 
| 93 | 
             
                        shift_logits = shift_logits.view(-1, self.config.vocab_size)
         | 
| 94 | 
             
                        shift_labels = shift_labels.view(-1)
         | 
| 95 | 
             
                        # Enable model parallelism
         | 
| 96 | 
             
                        shift_labels = shift_labels.to(shift_logits.device)
         | 
| 97 | 
             
                        loss = loss_fct(shift_logits, shift_labels)
         | 
| 98 | 
            +
                        if reduction == "none":
         | 
| 99 | 
            +
                            loss = loss.view(logits.size(0), -1).mean(1)
         | 
| 100 |  | 
| 101 | 
             
                    if not return_dict:
         | 
| 102 | 
             
                        output = (logits,) + outputs[1:]
         | 
|  | |
| 109 | 
             
                        hidden_states=outputs.hidden_states,
         | 
| 110 | 
             
                        attentions=outputs.attentions,
         | 
| 111 | 
             
                    )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        minigpt4/runners/runner_base.py
    CHANGED
    
    | @@ -627,14 +627,14 @@ class RunnerBase: | |
| 627 | 
             
                        cached_file = download_cached_file(
         | 
| 628 | 
             
                            url_or_filename, check_hash=False, progress=True
         | 
| 629 | 
             
                        )
         | 
| 630 | 
            -
                        checkpoint = torch.load(cached_file, map_location=self.device | 
| 631 | 
             
                    elif os.path.isfile(url_or_filename):
         | 
| 632 | 
            -
                        checkpoint = torch.load(url_or_filename, map_location=self.device | 
| 633 | 
             
                    else:
         | 
| 634 | 
             
                        raise RuntimeError("checkpoint url or path is invalid")
         | 
| 635 |  | 
| 636 | 
             
                    state_dict = checkpoint["model"]
         | 
| 637 | 
            -
                    self.unwrap_dist_model(self.model).load_state_dict(state_dict)
         | 
| 638 |  | 
| 639 | 
             
                    self.optimizer.load_state_dict(checkpoint["optimizer"])
         | 
| 640 | 
             
                    if self.scaler and "scaler" in checkpoint:
         | 
|  | |
| 627 | 
             
                        cached_file = download_cached_file(
         | 
| 628 | 
             
                            url_or_filename, check_hash=False, progress=True
         | 
| 629 | 
             
                        )
         | 
| 630 | 
            +
                        checkpoint = torch.load(cached_file, map_location=self.device)
         | 
| 631 | 
             
                    elif os.path.isfile(url_or_filename):
         | 
| 632 | 
            +
                        checkpoint = torch.load(url_or_filename, map_location=self.device)
         | 
| 633 | 
             
                    else:
         | 
| 634 | 
             
                        raise RuntimeError("checkpoint url or path is invalid")
         | 
| 635 |  | 
| 636 | 
             
                    state_dict = checkpoint["model"]
         | 
| 637 | 
            +
                    self.unwrap_dist_model(self.model).load_state_dict(state_dict,strict=False)
         | 
| 638 |  | 
| 639 | 
             
                    self.optimizer.load_state_dict(checkpoint["optimizer"])
         | 
| 640 | 
             
                    if self.scaler and "scaler" in checkpoint:
         |