File size: 11,362 Bytes
a4f8e39 41714f8 a4f8e39 b60a104 41714f8 a4f8e39 41714f8 b60a104 41714f8 b60a104 a4f8e39 41714f8 a4f8e39 41714f8 a4f8e39 41714f8 b60a104 41714f8 b60a104 41714f8 b60a104 41714f8 b60a104 41714f8 b60a104 41714f8 a4f8e39 41714f8 a4f8e39 0be8fa0 a4f8e39 41714f8 a4f8e39 0be8fa0 a4f8e39 b60a104 a4f8e39 b60a104 a4f8e39 41714f8 b60a104 a4f8e39 b60a104 a4f8e39 41714f8 b60a104 41714f8 b60a104 b2a4427 41714f8 b60a104 a4f8e39 b60a104 a4f8e39 41714f8 b60a104 a4f8e39 b60a104 41714f8 b60a104 41714f8 a4f8e39 b60a104 a4f8e39 41714f8 b60a104 41714f8 b60a104 41714f8 b60a104 41714f8 b60a104 41714f8 b60a104 41714f8 a4f8e39 41714f8 b60a104 41714f8 b60a104 41714f8 a4f8e39 b60a104 41714f8 b60a104 41714f8 b60a104 a4f8e39 41714f8 b60a104 a4f8e39 b60a104 a4f8e39 b60a104 41714f8 b60a104 a4f8e39 b60a104 41714f8 b60a104 41714f8 b60a104 41714f8 a4f8e39 b60a104 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import warnings
warnings.filterwarnings("ignore")
import gradio as gr
import numpy as np
import pandas as pd
import yfinance as yf
import matplotlib.pyplot as plt
from pandas.tseries.frequencies import to_offset
from gluonts.dataset.common import ListDataset
# --- Moirai 2.0 via Uni2TS ---
# Make sure your requirements install Uni2TS from GitHub:
# git+https://github.com/SalesforceAIResearch/uni2ts.git
try:
from uni2ts.model.moirai2 import Moirai2Forecast, Moirai2Module
except Exception as e:
raise ImportError(
"Moirai 2.0 not found in your Uni2TS install.\n"
"Ensure requirements.txt includes:\n"
" git+https://github.com/SalesforceAIResearch/uni2ts.git\n"
f"Original error: {e}"
)
MODEL_ID = "Salesforce/moirai-2.0-R-small"
DEFAULT_CONTEXT = 1680 # from Moirai examples, but we clamp to series length
# ----------------------------
# Model loader (single instance)
# ----------------------------
_MODULE = None
def load_module():
global _MODULE
if _MODULE is None:
_MODULE = Moirai2Module.from_pretrained(MODEL_ID)
return _MODULE
# ----------------------------
# Shared forecasting core
# ----------------------------
def _future_index(last_idx: pd.Timestamp, freq: str, horizon: int) -> pd.DatetimeIndex:
off = to_offset(freq)
start = last_idx + off
return pd.date_range(start=start, periods=horizon, freq=freq)
def _run_forecast_on_series(
y: pd.Series,
freq: str,
horizon: int,
context_hint: int,
title: str,
):
if len(y) < 50:
raise gr.Error("Need at least 50 points to forecast.")
ctx = int(np.clip(context_hint or DEFAULT_CONTEXT, 32, len(y)))
target = y.values[-ctx:].astype(np.float32)
start_idx = y.index[-ctx]
ds = ListDataset([{"start": start_idx, "target": target}], freq=freq)
module = load_module()
model = Moirai2Forecast(
module=module,
prediction_length=int(horizon),
context_length=ctx,
target_dim=1,
feat_dynamic_real_dim=0,
past_feat_dynamic_real_dim=0,
)
predictor = model.create_predictor(batch_size=32) # device handled internally
forecast = next(iter(predictor.predict(ds)))
if hasattr(forecast, "mean"):
yhat = np.asarray(forecast.mean)
elif hasattr(forecast, "quantile"):
yhat = np.asarray(forecast.quantile(0.5))
elif hasattr(forecast, "samples"):
yhat = np.asarray(forecast.samples).mean(axis=0)
else:
yhat = np.asarray(forecast)
yhat = np.asarray(yhat).ravel()[:horizon]
future_idx = _future_index(y.index[-1], freq, horizon)
pred = pd.Series(yhat, index=future_idx, name="prediction")
# Plot
fig = plt.figure(figsize=(10, 5))
plt.plot(y.index, y.values, label="history")
plt.plot(pred.index, pred.values, label="forecast")
plt.title(title)
plt.xlabel("Time"); plt.ylabel("Value"); plt.legend(); plt.tight_layout()
out_df = pd.DataFrame({"date": pred.index, "prediction": pred.values})
return fig, out_df
# ----------------------------
# Ticker helpers
# ----------------------------
def fetch_series(ticker: str, years: int) -> pd.Series:
"""Fetch daily close prices and align to business-day frequency."""
data = yf.download(
ticker,
period=f"{years}y",
interval="1d",
auto_adjust=True,
progress=False,
threads=True,
)
if data is None or data.empty:
raise gr.Error(f"No price data found for '{ticker}'.")
col = "Close" if "Close" in data.columns else ("Adj Close" if "Adj Close" in data.columns else None)
if col is None:
raise gr.Error(f"Unexpected columns from yfinance: {list(data.columns)}")
if isinstance(data.columns, pd.MultiIndex):
if ticker in data[col].columns:
s = data[col][ticker]
else:
s = data[col].iloc[:, 0]
else:
s = data[col]
y = s.copy()
y.name = ticker
y.index = pd.DatetimeIndex(y.index).tz_localize(None)
# Business-day index; forward-fill holidays
bidx = pd.bdate_range(y.index.min(), y.index.max())
y = y.reindex(bidx).ffill()
if y.isna().all():
raise gr.Error(f"Only missing values for '{ticker}'.")
return y
def forecast_ticker(ticker: str, horizon: int, lookback_years: int, context_hint: int):
ticker = (ticker or "").strip().upper()
if not ticker:
raise gr.Error("Please enter a ticker symbol (e.g., AAPL).")
if horizon < 1:
raise gr.Error("Forecast horizon must be at least 1.")
y = fetch_series(ticker, lookback_years)
return _run_forecast_on_series(y, "B", horizon, context_hint, f"{ticker} β forecast (Moirai 2.0 R-small)")
# ----------------------------
# CSV helpers
# ----------------------------
def _read_csv_columns(file_path: str) -> pd.DataFrame:
try:
df = pd.read_csv(file_path)
except Exception:
df = pd.read_csv(file_path, sep=None, engine="python")
return df
def _coerce_numeric_series(s: pd.Series) -> pd.Series:
s = pd.to_numeric(s, errors="coerce")
return s.dropna().astype(np.float32)
def build_series_from_csv(file, value_col: str, date_col: str, freq_choice: str):
"""
Returns (series y with DateTimeIndex, freq string).
- If date_col is provided: parse dates and infer/align frequency.
- If NO date_col: create a synthetic date index using freq_choice (default to 'D' if auto/blank).
"""
if file is None:
raise gr.Error("Please upload a CSV file.")
# Gradio file object handling (v4/v5)
path = getattr(file, "name", None) or getattr(file, "path", None) or (file if isinstance(file, str) else None)
if path is None:
raise gr.Error("Could not read the uploaded file path.")
df = _read_csv_columns(path)
if df.empty:
raise gr.Error("Uploaded file is empty.")
# Value column selection
value_col = (value_col or "").strip()
if value_col:
if value_col not in df.columns:
raise gr.Error(f"Value column '{value_col}' not found. Available: {list(df.columns)}")
vals = _coerce_numeric_series(df[value_col])
else:
numeric_cols = [c for c in df.columns if pd.api.types.is_numeric_dtype(df[c])]
if numeric_cols:
vals = _coerce_numeric_series(df[numeric_cols[0]])
else:
vals = _coerce_numeric_series(df.iloc[:, 0])
if vals.empty or len(vals) < 10:
raise gr.Error("Not enough numeric values after parsing (need at least 10).")
date_col = (date_col or "").strip()
freq_choice_norm = (freq_choice or "").strip().upper()
if date_col:
if date_col not in df.columns:
raise gr.Error(f"Date column '{date_col}' not found. Available: {list(df.columns)}")
dt = pd.to_datetime(df[date_col], errors="coerce")
mask = dt.notna() & vals.notna()
dt = pd.DatetimeIndex(dt[mask]).tz_localize(None)
vals = vals[mask]
if len(vals) < 10:
raise gr.Error("Too few valid rows after parsing date/value columns.")
# Sort & dedupe index BEFORE inferring/aligning freq
order = np.argsort(dt.values)
dt = dt[order]
vals = vals.iloc[order].reset_index(drop=True)
y = pd.Series(vals.values, index=dt, name=value_col or "value").copy()
y = y[~y.index.duplicated(keep="last")].sort_index()
# Choose frequency
if freq_choice_norm and freq_choice_norm != "AUTO":
freq = freq_choice_norm
else:
inferred = pd.infer_freq(y.index)
if inferred:
freq = inferred
else:
weekday_ratio = (y.index.dayofweek < 5).mean()
freq = "B" if weekday_ratio > 0.95 else "D"
# Align to chosen frequency
y = y.asfreq(freq, method="ffill")
else:
# No date column: build synthetic index
freq = "D" if (not freq_choice_norm or freq_choice_norm == "AUTO") else freq_choice_norm
idx = pd.date_range(start="2000-01-01", periods=len(vals), freq=freq)
y = pd.Series(vals.values, index=idx, name=value_col or "value").copy()
if y.isna().all():
raise gr.Error("Series is all-NaN after processing.")
return y, freq
def forecast_csv(file, value_col: str, date_col: str, freq_choice: str, horizon: int, context_hint: int):
y, freq = build_series_from_csv(file, value_col, date_col, freq_choice)
return _run_forecast_on_series(y, freq, horizon, context_hint, f"Uploaded series β forecast (freq={freq})")
# ----------------------------
# UI
# ----------------------------
with gr.Blocks(title="Moirai 2.0 β Time Series Forecast (Research)") as demo:
gr.Markdown(
"""
# Moirai 2.0 β Time Series Forecast (Research)
Use **Salesforce/moirai-2.0-R-small** (via Uni2TS) to forecast either a stock ticker *or* a generic CSV time series.
> **Important**: Research/educational use only. Not investment advice. Model license: **CC-BY-NC-4.0 (non-commercial)**.
"""
)
with gr.Tab("By Ticker"):
with gr.Row():
ticker = gr.Textbox(label="Ticker", value="AAPL", placeholder="e.g., AAPL, MSFT, TSLA")
horizon_t = gr.Slider(5, 120, value=30, step=1, label="Forecast horizon (steps)")
with gr.Row():
lookback = gr.Slider(1, 10, value=5, step=1, label="Lookback window (years of history)")
ctx_t = gr.Slider(64, 5000, value=1680, step=16, label="Context length")
run_t = gr.Button("Run forecast", variant="primary")
plot_t = gr.Plot(label="History + Forecast")
table_t = gr.Dataframe(label="Forecast table", interactive=False)
run_t.click(forecast_ticker, inputs=[ticker, horizon_t, lookback, ctx_t], outputs=[plot_t, table_t])
with gr.Tab("Upload CSV"):
gr.Markdown(
"Upload a CSV with either (1) a **date/time column** and a **value column**, "
"or (2) just a numeric value column (then choose a frequency, or leave **auto** to default to **D**)."
)
with gr.Row():
file = gr.File(label="CSV file", file_types=[".csv"])
with gr.Row():
date_col = gr.Textbox(label="Date/time column (optional)", placeholder="e.g., date, timestamp")
value_col = gr.Textbox(label="Value column (optional β auto-detects first numeric)", placeholder="e.g., value, close")
with gr.Row():
freq_choice = gr.Dropdown(
label="Frequency",
value="auto",
choices=["auto", "B", "D", "H", "W", "M", "MS"],
info="If no date column, 'auto' defaults to D (daily)."
)
with gr.Row():
horizon_u = gr.Slider(1, 500, value=60, step=1, label="Forecast horizon (steps)")
ctx_u = gr.Slider(32, 5000, value=512, step=16, label="Context length")
run_u = gr.Button("Run forecast on CSV", variant="primary")
plot_u = gr.Plot(label="History + Forecast (CSV)")
table_u = gr.Dataframe(label="Forecast table (CSV)", interactive=False)
run_u.click(
forecast_csv,
inputs=[file, value_col, date_col, freq_choice, horizon_u, ctx_u],
outputs=[plot_u, table_u],
)
if __name__ == "__main__":
demo.launch()
|