Spaces:
Runtime error
Runtime error
import os | |
# os.system("sudo apt-get update && sudo apt-get install -y git") | |
# os.system("sudo apt-get -y install pybind11-dev") | |
# os.system("git clone https://github.com/facebookresearch/detectron2.git") | |
# os.system("pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html") | |
os.system("cd detectron2 && pip install detectron2-0.6-cp310-cp310-linux_x86_64.whl") | |
# os.system("pip3 install torch torchvision torchaudio") | |
os.system("pip install deepspeed==0.7.0") | |
import site | |
from importlib import reload | |
reload(site) | |
from PIL import Image | |
import argparse | |
import sys | |
import numpy as np | |
import cv2 | |
import gradio as gr | |
from detectron2.config import get_cfg | |
from detectron2.data.detection_utils import read_image | |
from detectron2.utils.logger import setup_logger | |
sys.path.insert(0, "third_party/CenterNet2/projects/CenterNet2/") | |
from centernet.config import add_centernet_config | |
from grit.config import add_grit_config | |
from grit.predictor import VisualizationDemo | |
def get_parser(): | |
parser = argparse.ArgumentParser(description="Detectron2 demo for builtin configs") | |
parser.add_argument( | |
"--config-file", | |
default="configs/GRiT_B_DenseCap_ObjectDet.yaml", | |
metavar="FILE", | |
help="path to config file", | |
) | |
parser.add_argument("--cpu", action="store_true", help="Use CPU only.") | |
parser.add_argument( | |
"--confidence-threshold", | |
type=float, | |
default=0.5, | |
help="Minimum score for instance predictions to be shown", | |
) | |
parser.add_argument( | |
"--test-task", | |
type=str, | |
default="", | |
help="Choose a task to have GRiT perform", | |
) | |
parser.add_argument( | |
"--opts", | |
help="Modify config options using the command-line 'KEY VALUE' pairs", | |
default=["MODEL.WEIGHTS", "./models/grit_b_densecap_objectdet.pth"], | |
nargs=argparse.REMAINDER, | |
) | |
return parser | |
def setup_cfg(args): | |
cfg = get_cfg() | |
if args.cpu: | |
cfg.MODEL.DEVICE = "cpu" | |
add_centernet_config(cfg) | |
add_grit_config(cfg) | |
cfg.merge_from_file(args.config_file) | |
cfg.merge_from_list(args.opts) | |
# Set score_threshold for builtin models | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold | |
cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = ( | |
args.confidence_threshold | |
) | |
if args.test_task: | |
cfg.MODEL.TEST_TASK = args.test_task | |
cfg.MODEL.BEAM_SIZE = 1 | |
cfg.MODEL.ROI_HEADS.SOFT_NMS_ENABLED = False | |
cfg.USE_ACT_CHECKPOINT = False | |
cfg.freeze() | |
return cfg | |
def predict(image_file): | |
image_array = np.array(image_file)[:, :, ::-1] # BGR | |
_, visualized_output = dense_captioning_demo.run_on_image(image_array) | |
visualized_output.save(os.path.join(os.getcwd(), "output.jpg")) | |
output_image = cv2.imread(os.path.join(os.getcwd(), "output.jpg")) | |
output_image = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB) | |
return Image.fromarray(output_image) | |
args = get_parser().parse_args() | |
args.test_task = "DenseCap" | |
setup_logger(name="fvcore") | |
logger = setup_logger() | |
logger.info("Arguments: " + str(args)) | |
cfg = setup_cfg(args) | |
dense_captioning_demo = VisualizationDemo(cfg) | |
demo = gr.Interface( | |
title="Dense Captioning - GRiT", | |
fn=predict, | |
inputs=gr.Image(type='pil', label="Original Image"), | |
outputs=gr.Image(type="pil",label="Output Image"), | |
examples=["example_1.jpg", "example_2.jpg"], | |
) | |
demo.launch() |