luca115's picture
Update app.py
a4fb37e verified
import spaces
import torch
from diffusers import AutoencoderKLWan, WanPipeline, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
import random
MODEL_ID = "FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers"
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
# Initialize pipelines
text_to_video_pipe = WanPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16)
image_to_video_pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16)
for pipe in [text_to_video_pipe, image_to_video_pipe]:
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")
# Constants
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 896
DEFAULT_W_SLIDER_VALUE = 896
NEW_FORMULA_MAX_AREA = 720 * 1024
SLIDER_MIN_H, SLIDER_MAX_H = 256, 1024
SLIDER_MIN_W, SLIDER_MAX_W = 256, 1024
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 24
MIN_FRAMES_MODEL = 25
MAX_FRAMES_MODEL = 193
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area, min_slider_h, max_slider_h, min_slider_w, max_slider_w, default_h, default_w):
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0:
return default_h, default_w
aspect_ratio = orig_h / orig_w
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
return new_h, new_w
def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
if uploaded_pil_image is None:
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
try:
new_h, new_w = _calculate_new_dimensions_wan(
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
gr.Warning("Error attempting to calculate new dimensions")
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
def get_duration_video(input_image, prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps,
seed, randomize_seed,
progress):
return steps * 2 * duration_seconds
def get_duration_image(prompt, height, width, negative_prompt, guidance_scale, steps, seed, randomize_seed, progress):
return steps
@spaces.GPU(duration=get_duration_video)
def generate_video(prompt, height, width, input_image=None, negative_prompt=default_negative_prompt, duration_seconds=2, guidance_scale=0, steps=4, seed=44, randomize_seed=False, progress=gr.Progress(track_tqdm=True)):
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
if input_image is not None:
resized_image = input_image.resize((target_w, target_h))
with torch.inference_mode():
output_frames_list = image_to_video_pipe(
image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
height=target_h, width=target_w, num_frames=num_frames,
guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
else:
with torch.inference_mode():
output_frames_list = text_to_video_pipe(
prompt=prompt, negative_prompt=negative_prompt,
height=target_h, width=target_w, num_frames=num_frames,
guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
return video_path, current_seed
@spaces.GPU(duration=get_duration_image)
def generate_image(prompt, height, width, negative_prompt=default_negative_prompt, guidance_scale=0, steps=4, seed=44, randomize_seed=False, progress=gr.Progress(track_tqdm=True)):
"""Generates a single image using the text-to-video pipeline by requesting only one frame."""
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
with torch.inference_mode():
output_frame = text_to_video_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=target_h,
width=target_w,
num_frames=1,
guidance_scale=float(guidance_scale),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0][0]
return output_frame, current_seed
with gr.Blocks() as demo:
gr.Markdown("# Fast Wan 2.2 T2V I2V T2I 5B")
gr.Markdown("""This Demo is using [FastWan2.2-TI2V-5B](https://huggingface.co/FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers) which is fine-tuned with Sparse-distill method which allows wan to generate high quality videos in 3-5 steps.""")
with gr.Tabs():
with gr.TabItem("Text/Image-to-Video"):
with gr.Row():
with gr.Column():
input_image_component = gr.Image(type="pil", label="Input Image (optional, auto-resized to target H/W)")
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
duration_seconds_input = gr.Slider(minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), step=0.1, value=2, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
with gr.Row():
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
steps_slider = gr.Slider(minimum=1, maximum=8, step=1, value=4, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.0, label="Guidance Scale")
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
input_image_component.upload(fn=handle_image_upload_for_dims_wan, inputs=[input_image_component, height_input, width_input], outputs=[height_input, width_input])
input_image_component.clear(fn=handle_image_upload_for_dims_wan, inputs=[input_image_component, height_input, width_input], outputs=[height_input, width_input])
ui_inputs_video = [prompt_input, height_input, width_input, input_image_component, negative_prompt_input, duration_seconds_input, guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox]
generate_button.click(fn=generate_video, inputs=ui_inputs_video, outputs=[video_output, seed_input])
with gr.TabItem("Text-to-Image"):
with gr.Row():
with gr.Column():
prompt_input_img = gr.Textbox(label="Prompt", value="An american man")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input_img = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
seed_input_img = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
randomize_seed_checkbox_img = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
with gr.Row():
height_input_img = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
width_input_img = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
steps_slider_img = gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Inference Steps")
guidance_scale_input_img = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.0, label="Guidance Scale")
generate_button_img = gr.Button("Generate Image", variant="primary")
with gr.Column():
image_output = gr.Image(label="Generated Image", interactive=False)
ui_inputs_img = [prompt_input_img, height_input_img, width_input_img, negative_prompt_input_img, guidance_scale_input_img, steps_slider_img, seed_input_img, randomize_seed_checkbox_img]
generate_button_img.click(fn=generate_image, inputs=ui_inputs_img, outputs=[image_output, seed_input_img])
if __name__ == "__main__":
demo.queue().launch()