Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
from diffusers import AutoencoderKLWan, WanPipeline, WanImageToVideoPipeline, UniPCMultistepScheduler | |
from diffusers.utils import export_to_video | |
import gradio as gr | |
import tempfile | |
import numpy as np | |
import random | |
MODEL_ID = "FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers" | |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32) | |
# Initialize pipelines | |
text_to_video_pipe = WanPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16) | |
image_to_video_pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16) | |
for pipe in [text_to_video_pipe, image_to_video_pipe]: | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0) | |
pipe.to("cuda") | |
# Constants | |
MOD_VALUE = 32 | |
DEFAULT_H_SLIDER_VALUE = 896 | |
DEFAULT_W_SLIDER_VALUE = 896 | |
NEW_FORMULA_MAX_AREA = 720 * 1024 | |
SLIDER_MIN_H, SLIDER_MAX_H = 256, 1024 | |
SLIDER_MIN_W, SLIDER_MAX_W = 256, 1024 | |
MAX_SEED = np.iinfo(np.int32).max | |
FIXED_FPS = 24 | |
MIN_FRAMES_MODEL = 25 | |
MAX_FRAMES_MODEL = 193 | |
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation" | |
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature" | |
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area, min_slider_h, max_slider_h, min_slider_w, max_slider_w, default_h, default_w): | |
orig_w, orig_h = pil_image.size | |
if orig_w <= 0 or orig_h <= 0: | |
return default_h, default_w | |
aspect_ratio = orig_h / orig_w | |
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio)) | |
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio)) | |
calc_h = max(mod_val, (calc_h // mod_val) * mod_val) | |
calc_w = max(mod_val, (calc_w // mod_val) * mod_val) | |
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val)) | |
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val)) | |
return new_h, new_w | |
def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val): | |
if uploaded_pil_image is None: | |
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) | |
try: | |
new_h, new_w = _calculate_new_dimensions_wan( | |
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA, | |
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W, | |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE | |
) | |
return gr.update(value=new_h), gr.update(value=new_w) | |
except Exception as e: | |
gr.Warning("Error attempting to calculate new dimensions") | |
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) | |
def get_duration_video(input_image, prompt, height, width, | |
negative_prompt, duration_seconds, | |
guidance_scale, steps, | |
seed, randomize_seed, | |
progress): | |
return steps * 2 * duration_seconds | |
def get_duration_image(prompt, height, width, negative_prompt, guidance_scale, steps, seed, randomize_seed, progress): | |
return steps | |
def generate_video(prompt, height, width, input_image=None, negative_prompt=default_negative_prompt, duration_seconds=2, guidance_scale=0, steps=4, seed=44, randomize_seed=False, progress=gr.Progress(track_tqdm=True)): | |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) | |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) | |
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) | |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
if input_image is not None: | |
resized_image = input_image.resize((target_w, target_h)) | |
with torch.inference_mode(): | |
output_frames_list = image_to_video_pipe( | |
image=resized_image, prompt=prompt, negative_prompt=negative_prompt, | |
height=target_h, width=target_w, num_frames=num_frames, | |
guidance_scale=float(guidance_scale), num_inference_steps=int(steps), | |
generator=torch.Generator(device="cuda").manual_seed(current_seed) | |
).frames[0] | |
else: | |
with torch.inference_mode(): | |
output_frames_list = text_to_video_pipe( | |
prompt=prompt, negative_prompt=negative_prompt, | |
height=target_h, width=target_w, num_frames=num_frames, | |
guidance_scale=float(guidance_scale), num_inference_steps=int(steps), | |
generator=torch.Generator(device="cuda").manual_seed(current_seed) | |
).frames[0] | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: | |
video_path = tmpfile.name | |
export_to_video(output_frames_list, video_path, fps=FIXED_FPS) | |
return video_path, current_seed | |
def generate_image(prompt, height, width, negative_prompt=default_negative_prompt, guidance_scale=0, steps=4, seed=44, randomize_seed=False, progress=gr.Progress(track_tqdm=True)): | |
"""Generates a single image using the text-to-video pipeline by requesting only one frame.""" | |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) | |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) | |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
with torch.inference_mode(): | |
output_frame = text_to_video_pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
height=target_h, | |
width=target_w, | |
num_frames=1, | |
guidance_scale=float(guidance_scale), | |
num_inference_steps=int(steps), | |
generator=torch.Generator(device="cuda").manual_seed(current_seed) | |
).frames[0][0] | |
return output_frame, current_seed | |
with gr.Blocks() as demo: | |
gr.Markdown("# Fast Wan 2.2 T2V I2V T2I 5B") | |
gr.Markdown("""This Demo is using [FastWan2.2-TI2V-5B](https://huggingface.co/FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers) which is fine-tuned with Sparse-distill method which allows wan to generate high quality videos in 3-5 steps.""") | |
with gr.Tabs(): | |
with gr.TabItem("Text/Image-to-Video"): | |
with gr.Row(): | |
with gr.Column(): | |
input_image_component = gr.Image(type="pil", label="Input Image (optional, auto-resized to target H/W)") | |
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v) | |
duration_seconds_input = gr.Slider(minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), step=0.1, value=2, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.") | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3) | |
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) | |
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True) | |
with gr.Row(): | |
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})") | |
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})") | |
steps_slider = gr.Slider(minimum=1, maximum=8, step=1, value=4, label="Inference Steps") | |
guidance_scale_input = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.0, label="Guidance Scale") | |
generate_button = gr.Button("Generate Video", variant="primary") | |
with gr.Column(): | |
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False) | |
input_image_component.upload(fn=handle_image_upload_for_dims_wan, inputs=[input_image_component, height_input, width_input], outputs=[height_input, width_input]) | |
input_image_component.clear(fn=handle_image_upload_for_dims_wan, inputs=[input_image_component, height_input, width_input], outputs=[height_input, width_input]) | |
ui_inputs_video = [prompt_input, height_input, width_input, input_image_component, negative_prompt_input, duration_seconds_input, guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox] | |
generate_button.click(fn=generate_video, inputs=ui_inputs_video, outputs=[video_output, seed_input]) | |
with gr.TabItem("Text-to-Image"): | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input_img = gr.Textbox(label="Prompt", value="An american man") | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt_input_img = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3) | |
seed_input_img = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) | |
randomize_seed_checkbox_img = gr.Checkbox(label="Randomize seed", value=True, interactive=True) | |
with gr.Row(): | |
height_input_img = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})") | |
width_input_img = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})") | |
steps_slider_img = gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Inference Steps") | |
guidance_scale_input_img = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.0, label="Guidance Scale") | |
generate_button_img = gr.Button("Generate Image", variant="primary") | |
with gr.Column(): | |
image_output = gr.Image(label="Generated Image", interactive=False) | |
ui_inputs_img = [prompt_input_img, height_input_img, width_input_img, negative_prompt_input_img, guidance_scale_input_img, steps_slider_img, seed_input_img, randomize_seed_checkbox_img] | |
generate_button_img.click(fn=generate_image, inputs=ui_inputs_img, outputs=[image_output, seed_input_img]) | |
if __name__ == "__main__": | |
demo.queue().launch() |