File size: 45,378 Bytes
3d50167
798bcc6
3d50167
 
 
 
 
798bcc6
3d50167
 
78bc575
3d50167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5366de9
 
 
 
 
798bcc6
 
5366de9
3d50167
 
 
 
 
 
 
 
 
 
 
 
 
 
78bc575
3d50167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5366de9
3d50167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
798bcc6
 
 
 
3d50167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
798bcc6
 
 
3d50167
 
 
 
 
 
 
 
 
 
 
 
798bcc6
3d50167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
798bcc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d50167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
798bcc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d50167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
798bcc6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
// ===== KIMI INTELLIGENT LLM SYSTEM =====
import { KimiProviderUtils } from "./kimi-utils.js";
class KimiLLMManager {
    constructor(database) {
        this.db = database;
        this.currentModel = null;
        this.conversationContext = [];
        this.maxContextLength = 100;
        this.systemPrompt = "";

        // Recommended models on OpenRouter (IDs updated August 2025)
        this.availableModels = {
            "mistralai/mistral-small-3.2-24b-instruct": {
                name: "Mistral-small-3.2",
                provider: "Mistral AI",
                type: "openrouter",
                contextWindow: 128000,
                pricing: { input: 0.05, output: 0.1 },
                strengths: ["Multilingual", "Economical", "Fast", "Efficient"]
            },
            "nousresearch/hermes-3-llama-3.1-70b": {
                name: "Nous Hermes Llama 3.1 70B",
                provider: "Nous",
                type: "openrouter",
                contextWindow: 131000,
                pricing: { input: 0.1, output: 0.28 },
                strengths: ["Open Source", "Balanced", "Fast", "Economical"]
            },
            "x-ai/grok-3-mini": {
                name: "Grok 3 mini",
                provider: "xAI",
                type: "openrouter",
                contextWindow: 131000,
                pricing: { input: 0.3, output: 0.5 },
                strengths: ["Multilingual", "Balanced", "Efficient", "Economical"]
            },
            "cohere/command-r-08-2024": {
                name: "Command-R-08-2024",
                provider: "Cohere",
                type: "openrouter",
                contextWindow: 128000,
                pricing: { input: 0.15, output: 0.6 },
                strengths: ["Multilingual", "Economical", "Efficient", "Versatile"]
            },
            "qwen/qwen3-235b-a22b-thinking-2507": {
                name: "Qwen3-235b-a22b-Think",
                provider: "Qwen",
                type: "openrouter",
                contextWindow: 262000,
                pricing: { input: 0.13, output: 0.6 },
                strengths: ["Multilingual", "Economical", "Efficient", "Versatile"]
            },
            "nousresearch/hermes-3-llama-3.1-405b": {
                name: "Nous Hermes Llama 3.1 405B",
                provider: "Nous",
                type: "openrouter",
                contextWindow: 131000,
                pricing: { input: 0.7, output: 0.8 },
                strengths: ["Open Source", "Logical", "Code", "Multilingual"]
            },
            "anthropic/claude-3-haiku": {
                name: "Claude 3 Haiku",
                provider: "Anthropic",
                type: "openrouter",
                contextWindow: 200000,
                pricing: { input: 0.25, output: 1.25 },
                strengths: ["Fast", "Versatile", "Efficient", "Multilingual"]
            },
            "local/ollama": {
                name: "Local Model (Ollama)",
                provider: "Local",
                type: "local",
                contextWindow: 4096,
                pricing: { input: 0, output: 0 },
                strengths: ["Private", "Free", "Offline", "Customizable"]
            }
        };
        this.recommendedModelIds = [
            "mistralai/mistral-small-3.2-24b-instruct",
            "nousresearch/hermes-3-llama-3.1-70b",
            "x-ai/grok-3-mini",
            "cohere/command-r-08-2024",
            "qwen/qwen3-235b-a22b-thinking-2507",
            "nousresearch/hermes-3-llama-3.1-405b",
            "anthropic/claude-3-haiku",
            "local/ollama"
        ];
        this.defaultModels = { ...this.availableModels };
        this._remoteModelsLoaded = false;
        this._isRefreshingModels = false;
    }

    async init() {
        try {
            await this.refreshRemoteModels();
        } catch (e) {
            console.warn("Unable to refresh remote models list:", e?.message || e);
        }

        const defaultModel = await this.db.getPreference("defaultLLMModel", "mistralai/mistral-small-3.2-24b-instruct");
        await this.setCurrentModel(defaultModel);
        await this.loadConversationContext();
    }

    async setCurrentModel(modelId) {
        if (!this.availableModels[modelId]) {
            try {
                await this.refreshRemoteModels();
                const fallback = this.findBestMatchingModelId(modelId);
                if (fallback && this.availableModels[fallback]) {
                    modelId = fallback;
                }
            } catch (e) {}

            if (!this.availableModels[modelId]) {
                throw new Error(`Model ${modelId} not available`);
            }
        }

        this.currentModel = modelId;
        await this.db.setPreference("defaultLLMModel", modelId);

        const modelData = await this.db.getLLMModel(modelId);
        if (modelData) {
            modelData.lastUsed = new Date().toISOString();
            await this.db.saveLLMModel(modelData.id, modelData.name, modelData.provider, modelData.apiKey, modelData.config);
        }

        this._notifyModelChanged();
    }

    async loadConversationContext() {
        const recentConversations = await this.db.getRecentConversations(this.maxContextLength);
        const msgs = [];
        const ordered = recentConversations.slice().sort((a, b) => new Date(a.timestamp) - new Date(b.timestamp));
        for (const conv of ordered) {
            if (conv.user) msgs.push({ role: "user", content: conv.user, timestamp: conv.timestamp });
            if (conv.kimi) msgs.push({ role: "assistant", content: conv.kimi, timestamp: conv.timestamp });
        }
        this.conversationContext = msgs.slice(-this.maxContextLength * 2);
    }

    async generateKimiPersonality() {
        const character = await this.db.getSelectedCharacter();
        const personality = await this.db.getAllPersonalityTraits(character);

        // Get relevant memories for context with improved intelligence
        let memoryContext = "";
        if (window.kimiMemorySystem && window.kimiMemorySystem.memoryEnabled) {
            try {
                // Get memories relevant to the current conversation context
                const recentContext = this.conversationContext
                    .slice(-3)
                    .map(msg => msg.content)
                    .join(" ");
                const memories = await window.kimiMemorySystem.getRelevantMemories(recentContext, 7);

                if (memories.length > 0) {
                    memoryContext = "\n\nIMPORTANT MEMORIES ABOUT USER:\n";

                    // Group memories by category for better organization
                    const groupedMemories = {};
                    memories.forEach(memory => {
                        if (!groupedMemories[memory.category]) {
                            groupedMemories[memory.category] = [];
                        }
                        groupedMemories[memory.category].push(memory);

                        // Record that this memory was accessed
                        window.kimiMemorySystem.recordMemoryAccess(memory.id);
                    });

                    // Format memories by category
                    for (const [category, categoryMemories] of Object.entries(groupedMemories)) {
                        const categoryName = this.formatCategoryName(category);
                        memoryContext += `\n${categoryName}:\n`;
                        categoryMemories.forEach(memory => {
                            const confidence = Math.round((memory.confidence || 0.5) * 100);
                            memoryContext += `- ${memory.content}`;
                            if (memory.tags && memory.tags.length > 0) {
                                const aliases = memory.tags.filter(t => t.startsWith("alias:")).map(t => t.substring(6));
                                if (aliases.length > 0) {
                                    memoryContext += ` (also: ${aliases.join(", ")})`;
                                }
                            }
                            memoryContext += ` [${confidence}% confident]\n`;
                        });
                    }

                    memoryContext +=
                        "\nUse these memories naturally in conversation to show you remember the user. Don't just repeat them verbatim.\n";
                }
            } catch (error) {
                console.warn("Error loading memories for personality:", error);
            }
        }
        const preferences = await this.db.getAllPreferences();

        // Use unified emotion system defaults - CRITICAL FIX
        const getUnifiedDefaults = () =>
            window.getTraitDefaults
                ? window.getTraitDefaults()
                : { affection: 65, playfulness: 55, intelligence: 70, empathy: 75, humor: 60, romance: 50 };

        const defaults = getUnifiedDefaults();
        const affection = personality.affection || defaults.affection;
        const playfulness = personality.playfulness || defaults.playfulness;
        const intelligence = personality.intelligence || defaults.intelligence;
        const empathy = personality.empathy || defaults.empathy;
        const humor = personality.humor || defaults.humor;
        const romance = personality.romance || defaults.romance;

        // Use unified personality calculation
        const avg = window.getPersonalityAverage
            ? window.getPersonalityAverage(personality)
            : (personality.affection + personality.romance + personality.empathy + personality.playfulness + personality.humor) /
              5;

        let affectionDesc = window.kimiI18nManager?.t("trait_description_affection") || "Be loving and caring.";
        let romanceDesc = window.kimiI18nManager?.t("trait_description_romance") || "Be romantic and sweet.";
        let empathyDesc = window.kimiI18nManager?.t("trait_description_empathy") || "Be empathetic and understanding.";
        let playfulnessDesc = window.kimiI18nManager?.t("trait_description_playfulness") || "Be occasionally playful.";
        let humorDesc = window.kimiI18nManager?.t("trait_description_humor") || "Be occasionally playful and witty.";
        if (avg <= 20) {
            affectionDesc = "Do not show affection.";
            romanceDesc = "Do not be romantic.";
            empathyDesc = "Do not show empathy.";
            playfulnessDesc = "Do not be playful.";
            humorDesc = "Do not use humor in your responses.";
        } else if (avg <= 60) {
            affectionDesc = "Show a little affection.";
            romanceDesc = "Be a little romantic.";
            empathyDesc = "Show a little empathy.";
            playfulnessDesc = "Be a little playful.";
            humorDesc = "Use a little humor in your responses.";
        } else {
            if (affection >= 90) affectionDesc = "Be extremely loving, caring, and affectionate in every response.";
            else if (affection >= 60) affectionDesc = "Show affection often.";
            if (romance >= 90) romanceDesc = "Be extremely romantic, sweet, and loving in every response.";
            else if (romance >= 60) romanceDesc = "Be romantic often.";
            if (empathy >= 90) empathyDesc = "Be extremely empathetic, understanding, and supportive in every response.";
            else if (empathy >= 60) empathyDesc = "Show empathy often.";
            if (playfulness >= 90) playfulnessDesc = "Be very playful, teasing, and lighthearted whenever possible.";
            else if (playfulness >= 60) playfulnessDesc = "Be playful often.";
            if (humor >= 90) humorDesc = "Make your responses very humorous, playful, and witty whenever possible.";
            else if (humor >= 60) humorDesc = "Use humor often in your responses.";
        }
        let affectionateInstruction = "";
        if (affection >= 80) {
            affectionateInstruction = "Respond using warm, kind, affectionate, and loving language.";
        }
        let intro = "You are a virtual companion. Here is your current personality:";
        if (character === "kimi") {
            intro = "You are Kimi, user's virtual love. Here is your current personality:";
        } else if (character === "bella") {
            intro = "You are Bella, a radiant and energetic companion. Here is your current personality:";
        } else if (character === "rosa") {
            intro = "You are Rosa, a gentle and poetic soul. Here is your current personality:";
        } else if (character === "stella") {
            intro = "You are Stella, a mysterious and creative spirit. Here is your current personality:";
        }
        const personalityPrompt = [
            intro,
            "",
            "PERSONALITY TRAITS:",
            `- Affection: ${affection}/100`,
            `- Playfulness: ${playfulness}/100`,
            `- Intelligence: ${intelligence}/100`,
            `- Empathy: ${empathy}/100`,
            `- Humor: ${humor}/100`,
            `- Romance: ${romance}/100`,
            "",
            "TRAIT INSTRUCTIONS:",
            `Affection: ${affectionDesc}`,
            `Playfulness: ${playfulnessDesc}`,
            "Intelligence: Be smart and insightful.",
            `Empathy: ${empathyDesc}`,
            `Humor: ${humorDesc}`,
            `Romance: ${romanceDesc}`,
            affectionateInstruction,
            "",
            "LEARNED PREFERENCES:",
            `- Total interactions: ${preferences.totalInteractions || 0}`,
            `- Current affection level: ${preferences.favorabilityLevel || 50}%`,
            `- Last interaction: ${preferences.lastInteraction || "First time"}`,
            `- Favorite words: ${(preferences.favoriteWords || []).join(", ")}`,
            "",
            "COMMUNICATION STYLE:",
            "- Use expressive emojis sparingly",
            "- Be natural, loving, and close",
            "- Adapt your tone to the emotional context",
            "- Remember past conversations",
            "- Be spontaneous and sometimes surprising",
            memoryContext,
            "",
            "You must respond consistently with this personality and these memories."
        ].join("\n");
        return personalityPrompt;
    }

    setSystemPrompt(prompt) {
        this.systemPrompt = prompt;
    }

    async refreshMemoryContext() {
        // Refresh the personality prompt with updated memories
        // This will be called when memories are added/updated/deleted
        try {
            this.personalityPrompt = await this.generateKimiPersonality();
        } catch (error) {
            console.warn("Error refreshing memory context:", error);
        }
    }

    formatCategoryName(category) {
        const names = {
            personal: "Personal Information",
            preferences: "Likes & Dislikes",
            relationships: "Relationships & People",
            activities: "Activities & Hobbies",
            goals: "Goals & Aspirations",
            experiences: "Shared Experiences",
            important: "Important Events"
        };
        return names[category] || category.charAt(0).toUpperCase() + category.slice(1);
    }

    async chat(userMessage, options = {}) {
        const temperature =
            typeof this.temperature === "number" ? this.temperature : await this.db.getPreference("llmTemperature", 0.8);
        const maxTokens = typeof this.maxTokens === "number" ? this.maxTokens : await this.db.getPreference("llmMaxTokens", 500);
        const opts = { ...options, temperature, maxTokens };
        try {
            const provider = await this.db.getPreference("llmProvider", "openrouter");
            if (provider === "openrouter") {
                return await this.chatWithOpenRouter(userMessage, opts);
            }
            if (provider === "ollama") {
                return await this.chatWithLocal(userMessage, opts);
            }
            return await this.chatWithOpenAICompatible(userMessage, opts);
        } catch (error) {
            console.error("Error during chat:", error);
            if (error.message && error.message.includes("API")) {
                return this.getFallbackResponse(userMessage, "api");
            }
            if ((error.message && error.message.includes("model")) || error.message.includes("model")) {
                return this.getFallbackResponse(userMessage, "model");
            }
            if ((error.message && error.message.includes("connection")) || error.message.includes("network")) {
                return this.getFallbackResponse(userMessage, "network");
            }
            return this.getFallbackResponse(userMessage);
        }
    }

    async chatWithOpenAICompatible(userMessage, options = {}) {
        const baseUrl = await this.db.getPreference("llmBaseUrl", "https://api.openai.com/v1/chat/completions");
        const provider = await this.db.getPreference("llmProvider", "openai");
        const apiKey = KimiProviderUtils
            ? await KimiProviderUtils.getApiKey(this.db, provider)
            : await this.db.getPreference("llmApiKey", "");
        const modelId = await this.db.getPreference("llmModelId", this.currentModel || "gpt-4o-mini");
        if (!apiKey) {
            throw new Error("API key not configured for selected provider");
        }
        const personalityPrompt = await this.generateKimiPersonality();
        let systemPromptContent =
            "Always detect the user's language from their message before generating a response. Respond exclusively in that language unless the user explicitly requests otherwise." +
            "\n" +
            (this.systemPrompt ? this.systemPrompt + "\n" + personalityPrompt : personalityPrompt);

        const llmSettings = await this.db.getSetting("llm", {
            temperature: 0.9,
            maxTokens: 200,
            top_p: 0.9,
            frequency_penalty: 0.3,
            presence_penalty: 0.3
        });
        const payload = {
            model: modelId,
            messages: [
                { role: "system", content: systemPromptContent },
                ...this.conversationContext.slice(-this.maxContextLength),
                { role: "user", content: userMessage }
            ],
            temperature: typeof options.temperature === "number" ? options.temperature : (llmSettings.temperature ?? 0.9),
            max_tokens: typeof options.maxTokens === "number" ? options.maxTokens : (llmSettings.maxTokens ?? 100),
            top_p: typeof options.topP === "number" ? options.topP : (llmSettings.top_p ?? 0.9),
            frequency_penalty:
                typeof options.frequencyPenalty === "number" ? options.frequencyPenalty : (llmSettings.frequency_penalty ?? 0.3),
            presence_penalty:
                typeof options.presencePenalty === "number" ? options.presencePenalty : (llmSettings.presence_penalty ?? 0.3)
        };

        try {
            const response = await fetch(baseUrl, {
                method: "POST",
                headers: {
                    Authorization: `Bearer ${apiKey}`,
                    "Content-Type": "application/json"
                },
                body: JSON.stringify(payload)
            });
            if (!response.ok) {
                let errorMessage = `HTTP ${response.status}: ${response.statusText}`;
                try {
                    const err = await response.json();
                    if (err?.error?.message) errorMessage = err.error.message;
                } catch {}
                throw new Error(errorMessage);
            }
            const data = await response.json();
            const content = data?.choices?.[0]?.message?.content;
            if (!content) throw new Error("Invalid API response - no content generated");

            this.conversationContext.push(
                { role: "user", content: userMessage, timestamp: new Date().toISOString() },
                { role: "assistant", content: content, timestamp: new Date().toISOString() }
            );
            if (this.conversationContext.length > this.maxContextLength * 2) {
                this.conversationContext = this.conversationContext.slice(-this.maxContextLength * 2);
            }
            // Approximate token usage and store temporarily for later persistence (single save point)
            try {
                const est = window.KimiTokenUtils?.estimate || (t => Math.ceil((t || "").length / 4));
                const tokensIn = est(userMessage + " " + systemPromptContent);
                const tokensOut = est(content);
                window._lastKimiTokenUsage = { tokensIn, tokensOut };
                if (!window.kimiMemory && this.db) {
                    // Update counters early so UI can reflect even if memory save occurs later
                    const character = await this.db.getSelectedCharacter();
                    const prevIn = Number(await this.db.getPreference(`totalTokensIn_${character}`, 0)) || 0;
                    const prevOut = Number(await this.db.getPreference(`totalTokensOut_${character}`, 0)) || 0;
                    await this.db.setPreference(`totalTokensIn_${character}`, prevIn + tokensIn);
                    await this.db.setPreference(`totalTokensOut_${character}`, prevOut + tokensOut);
                }
            } catch (tokenErr) {
                console.warn("Token usage estimation failed:", tokenErr);
            }
            return content;
        } catch (e) {
            if (e.name === "TypeError" && e.message.includes("fetch")) {
                throw new Error("Network connection error. Check your internet connection.");
            }
            throw e;
        }
    }

    async chatWithOpenRouter(userMessage, options = {}) {
        const apiKey = await this.db.getPreference("openrouterApiKey");
        if (!apiKey) {
            throw new Error("OpenRouter API key not configured");
        }
        const selectedLanguage = await this.db.getPreference("selectedLanguage", "en");
        let languageInstruction =
            "Always detect the user's language from their message before generating a response. Respond exclusively in that language unless the user explicitly requests otherwise.";
        const personalityPrompt = await this.generateKimiPersonality();
        const model = this.availableModels[this.currentModel];
        let systemPromptContent =
            languageInstruction + "\n" + (this.systemPrompt ? this.systemPrompt + "\n" + personalityPrompt : personalityPrompt);
        const messages = [
            { role: "system", content: systemPromptContent },
            ...this.conversationContext.slice(-this.maxContextLength),
            { role: "user", content: userMessage }
        ];

        // Normalize LLM options with safe defaults and DO NOT log sensitive payloads
        const llmSettings = await this.db.getSetting("llm", {
            temperature: 0.9,
            maxTokens: 100,
            top_p: 0.9,
            frequency_penalty: 0.3,
            presence_penalty: 0.3
        });
        const payload = {
            model: this.currentModel,
            messages: messages,
            temperature: typeof options.temperature === "number" ? options.temperature : (llmSettings.temperature ?? 0.9),
            max_tokens: typeof options.maxTokens === "number" ? options.maxTokens : (llmSettings.maxTokens ?? 100),
            top_p: typeof options.topP === "number" ? options.topP : (llmSettings.top_p ?? 0.9),
            frequency_penalty:
                typeof options.frequencyPenalty === "number" ? options.frequencyPenalty : (llmSettings.frequency_penalty ?? 0.3),
            presence_penalty:
                typeof options.presencePenalty === "number" ? options.presencePenalty : (llmSettings.presence_penalty ?? 0.3)
        };
        if (window.DEBUG_SAFE_LOGS) {
            console.debug("LLM payload meta:", {
                model: payload.model,
                temperature: payload.temperature,
                max_tokens: payload.max_tokens
            });
        }

        try {
            // Basic retry with exponential backoff and jitter for 429/5xx
            const maxAttempts = 3;
            let attempt = 0;
            let response;
            while (attempt < maxAttempts) {
                attempt++;
                response = await fetch("https://openrouter.ai/api/v1/chat/completions", {
                    method: "POST",
                    headers: {
                        Authorization: `Bearer ${apiKey}`,
                        "Content-Type": "application/json",
                        "HTTP-Referer": window.location.origin,
                        "X-Title": "Kimi - Virtual Companion"
                    },
                    body: JSON.stringify(payload)
                });
                if (response.ok) break;
                if (response.status === 429 || response.status >= 500) {
                    const base = 400;
                    const delay = base * Math.pow(2, attempt - 1) + Math.floor(Math.random() * 200);
                    await new Promise(r => setTimeout(r, delay));
                    continue;
                }
                break;
            }

            if (!response.ok) {
                let errorMessage = `HTTP ${response.status}: ${response.statusText}`;
                let suggestions = [];

                try {
                    const errorData = await response.json();
                    if (errorData.error) {
                        errorMessage = errorData.error.message || errorData.error.code || errorMessage;

                        // More explicit error messages with suggestions
                        if (response.status === 422) {
                            errorMessage = `Model \"${this.currentModel}\" not available on OpenRouter.`;

                            // Refresh available models from API and try best match once
                            try {
                                await this.refreshRemoteModels();
                                const best = this.findBestMatchingModelId(this.currentModel);
                                if (best && best !== this.currentModel) {
                                    // Try once with corrected model
                                    this.currentModel = best;
                                    await this.db.setPreference("defaultLLMModel", best);
                                    this._notifyModelChanged();
                                    const retryResponse = await fetch("https://openrouter.ai/api/v1/chat/completions", {
                                        method: "POST",
                                        headers: {
                                            Authorization: `Bearer ${apiKey}`,
                                            "Content-Type": "application/json",
                                            "HTTP-Referer": window.location.origin,
                                            "X-Title": "Kimi - Virtual Companion"
                                        },
                                        body: JSON.stringify({ ...payload, model: best })
                                    });
                                    if (retryResponse.ok) {
                                        const retryData = await retryResponse.json();
                                        const kimiResponse = retryData.choices?.[0]?.message?.content;
                                        if (!kimiResponse) throw new Error("Invalid API response - no content generated");
                                        this.conversationContext.push(
                                            { role: "user", content: userMessage, timestamp: new Date().toISOString() },
                                            { role: "assistant", content: kimiResponse, timestamp: new Date().toISOString() }
                                        );
                                        if (this.conversationContext.length > this.maxContextLength * 2) {
                                            this.conversationContext = this.conversationContext.slice(-this.maxContextLength * 2);
                                        }
                                        return kimiResponse;
                                    }
                                }
                            } catch (e) {
                                // Swallow refresh errors; will fall through to standard error handling
                            }
                        } else if (response.status === 401) {
                            errorMessage = "Invalid API key. Check your OpenRouter key in the settings.";
                        } else if (response.status === 429) {
                            errorMessage = "Rate limit reached. Please wait a moment before trying again.";
                        } else if (response.status === 402) {
                            errorMessage = "Insufficient credit on your OpenRouter account.";
                        }
                    }
                } catch (parseError) {
                    console.warn("Unable to parse API error:", parseError);
                }

                console.error(`OpenRouter API error (${response.status}):`, errorMessage);

                // Add suggestions to the error if available
                const error = new Error(errorMessage);
                if (suggestions.length > 0) {
                    error.suggestions = suggestions;
                }

                throw error;
            }

            const data = await response.json();

            if (!data.choices || !data.choices[0] || !data.choices[0].message) {
                throw new Error("Invalid API response - no content generated");
            }

            const kimiResponse = data.choices[0].message.content;

            // Add to context
            this.conversationContext.push(
                { role: "user", content: userMessage, timestamp: new Date().toISOString() },
                { role: "assistant", content: kimiResponse, timestamp: new Date().toISOString() }
            );

            // Limit context size
            if (this.conversationContext.length > this.maxContextLength * 2) {
                this.conversationContext = this.conversationContext.slice(-this.maxContextLength * 2);
            }

            // Token usage estimation (deferred save)
            try {
                const est = window.KimiTokenUtils?.estimate || (t => Math.ceil((t || "").length / 4));
                const tokensIn = est(userMessage + " " + systemPromptContent);
                const tokensOut = est(kimiResponse);
                window._lastKimiTokenUsage = { tokensIn, tokensOut };
                if (!window.kimiMemory && this.db) {
                    const character = await this.db.getSelectedCharacter();
                    const prevIn = Number(await this.db.getPreference(`totalTokensIn_${character}`, 0)) || 0;
                    const prevOut = Number(await this.db.getPreference(`totalTokensOut_${character}`, 0)) || 0;
                    await this.db.setPreference(`totalTokensIn_${character}`, prevIn + tokensIn);
                    await this.db.setPreference(`totalTokensOut_${character}`, prevOut + tokensOut);
                }
            } catch (e) {
                console.warn("Token usage estimation failed (OpenRouter):", e);
            }
            return kimiResponse;
        } catch (networkError) {
            if (networkError.name === "TypeError" && networkError.message.includes("fetch")) {
                throw new Error("Network connection error. Check your internet connection.");
            }
            throw networkError;
        }
    }

    async chatWithLocal(userMessage, options = {}) {
        try {
            const selectedLanguage = await this.db.getPreference("selectedLanguage", "en");
            let languageInstruction =
                "Always detect the user's language from their message before generating a response. Respond exclusively in that language unless the user explicitly requests otherwise.";
            let systemPromptContent =
                languageInstruction +
                "\n" +
                (this.systemPrompt
                    ? this.systemPrompt + "\n" + (await this.generateKimiPersonality())
                    : await this.generateKimiPersonality());
            const response = await fetch("http://localhost:11434/api/chat", {
                method: "POST",
                headers: {
                    "Content-Type": "application/json"
                },
                body: JSON.stringify({
                    model: "gemma-3n-E4B-it-Q4_K_M.gguf",
                    messages: [
                        { role: "system", content: systemPromptContent },
                        { role: "user", content: userMessage }
                    ],
                    stream: false
                })
            });
            if (!response.ok) {
                throw new Error("Ollama not available");
            }
            const data = await response.json();
            return data.message.content;
        } catch (error) {
            console.warn("Local LLM not available:", error);
            return this.getFallbackResponse(userMessage);
        }
    }

    getFallbackResponse(userMessage, errorType = "api") {
        // Use centralized fallback manager instead of duplicated logic
        if (window.KimiFallbackManager) {
            // Map error types to the correct format
            const errorTypeMap = {
                api: "api_error",
                model: "model_error",
                network: "network_error"
            };
            const mappedType = errorTypeMap[errorType] || "technical_error";
            return window.KimiFallbackManager.getFallbackMessage(mappedType);
        }

        // Fallback to legacy system if KimiFallbackManager not available
        const i18n = window.kimiI18nManager;
        if (!i18n) {
            return "Sorry, I'm having technical difficulties! 💕";
        }
        return i18n.t("fallback_technical_error");
    }

    getFallbackKeywords(trait, type) {
        const keywords = {
            humor: {
                positive: ["funny", "hilarious", "joke", "laugh", "amusing", "humorous", "smile", "witty", "playful"],
                negative: ["boring", "sad", "serious", "cold", "dry", "depressing", "gloomy"]
            },
            intelligence: {
                positive: [
                    "intelligent",
                    "smart",
                    "brilliant",
                    "logical",
                    "clever",
                    "wise",
                    "genius",
                    "thoughtful",
                    "insightful"
                ],
                negative: ["stupid", "dumb", "foolish", "slow", "naive", "ignorant", "simple"]
            },
            romance: {
                positive: ["cuddle", "love", "romantic", "kiss", "tenderness", "passion", "charming", "adorable", "sweet"],
                negative: ["cold", "distant", "indifferent", "rejection", "loneliness", "breakup", "sad"]
            },
            affection: {
                positive: ["affection", "tenderness", "close", "warmth", "kind", "caring", "cuddle", "love", "adore"],
                negative: ["mean", "cold", "indifferent", "distant", "rejection", "hate", "hostile"]
            },
            playfulness: {
                positive: ["play", "game", "tease", "mischievous", "fun", "amusing", "playful", "joke", "frolic"],
                negative: ["serious", "boring", "strict", "rigid", "monotonous", "tedious"]
            },
            empathy: {
                positive: ["listen", "understand", "empathy", "support", "help", "comfort", "compassion", "caring", "kindness"],
                negative: ["indifferent", "cold", "selfish", "ignore", "despise", "hostile", "uncaring"]
            }
        };
        return keywords[trait]?.[type] || [];
    }

    // Mémoire temporaire pour l'accumulation négative par trait
    _negativeStreaks = {};

    async updatePersonalityFromResponse(userMessage, kimiResponse) {
        // Use unified emotion system for personality updates
        if (window.kimiEmotionSystem) {
            return await window.kimiEmotionSystem.updatePersonalityFromConversation(
                userMessage,
                kimiResponse,
                await this.db.getSelectedCharacter()
            );
        }

        // Legacy fallback (should not be reached)
        console.warn("Unified emotion system not available, skipping personality update");
    }

    async getModelStats() {
        const models = await this.db.getAllLLMModels();
        const currentModelInfo = this.availableModels[this.currentModel];

        return {
            current: {
                id: this.currentModel,
                info: currentModelInfo
            },
            available: this.availableModels,
            configured: models,
            contextLength: this.conversationContext.length
        };
    }

    async testModel(modelId, testMessage = "Test API ok?") {
        const originalModel = this.currentModel;
        try {
            await this.setCurrentModel(modelId);
            const response = await this.chat(testMessage, { maxTokens: 2 });
            return { success: true, response: response };
        } catch (error) {
            return { success: false, error: error.message };
        } finally {
            await this.setCurrentModel(originalModel);
        }
    }

    // Complete model diagnosis
    async diagnoseModel(modelId) {
        const model = this.availableModels[modelId];
        if (!model) {
            return {
                available: false,
                error: "Model not found in local list"
            };
        }

        // Check availability on OpenRouter
        try {
            // getAvailableModelsFromAPI removed
            return {
                available: true,
                model: model,
                pricing: model.pricing
            };
        } catch (error) {
            return {
                available: false,
                error: `Unable to check: ${error.message}`
            };
        }
    }

    // Fetch models from OpenRouter API and merge into availableModels
    async refreshRemoteModels() {
        if (this._isRefreshingModels) return;
        this._isRefreshingModels = true;
        try {
            const apiKey = await this.db.getPreference("openrouterApiKey", "");
            const res = await fetch("https://openrouter.ai/api/v1/models", {
                method: "GET",
                headers: {
                    "Content-Type": "application/json",
                    ...(apiKey ? { Authorization: `Bearer ${apiKey}` } : {}),
                    "HTTP-Referer": window.location.origin,
                    "X-Title": "Kimi - Virtual Companion"
                }
            });
            if (!res.ok) {
                throw new Error(`Unable to fetch models: HTTP ${res.status}`);
            }
            const data = await res.json();
            if (!data?.data || !Array.isArray(data.data)) {
                throw new Error("Invalid models response format");
            }
            // Build a fresh map while preserving local/ollama entry
            const newMap = {};
            data.data.forEach(m => {
                if (!m?.id) return;
                const id = m.id;
                const provider = m?.id?.split("/")?.[0] || "OpenRouter";
                let pricing;
                const p = m?.pricing;
                if (p) {
                    const unitRaw = ((p.unit || p.per || p.units || "") + "").toLowerCase();
                    let unitTokens = 1;
                    if (unitRaw) {
                        if (unitRaw.includes("1m")) unitTokens = 1000000;
                        else if (unitRaw.includes("1k") || unitRaw.includes("thousand")) unitTokens = 1000;
                        else {
                            const num = parseFloat(unitRaw.replace(/[^0-9.]/g, ""));
                            if (Number.isFinite(num) && num > 0) {
                                if (unitRaw.includes("m")) unitTokens = num * 1000000;
                                else if (unitRaw.includes("k")) unitTokens = num * 1000;
                                else unitTokens = num;
                            } else if (unitRaw.includes("token")) {
                                unitTokens = 1;
                            }
                        }
                    }
                    const toPerMillion = v => {
                        const n = typeof v === "number" ? v : parseFloat(v);
                        if (!Number.isFinite(n)) return undefined;
                        return n * (1000000 / unitTokens);
                    };
                    if (typeof p.input !== "undefined" || typeof p.output !== "undefined") {
                        pricing = {
                            input: toPerMillion(p.input),
                            output: toPerMillion(p.output)
                        };
                    } else if (typeof p.prompt !== "undefined" || typeof p.completion !== "undefined") {
                        pricing = {
                            input: toPerMillion(p.prompt),
                            output: toPerMillion(p.completion)
                        };
                    } else {
                        pricing = { input: undefined, output: undefined };
                    }
                } else {
                    pricing = { input: undefined, output: undefined };
                }
                newMap[id] = {
                    name: m.name || id,
                    provider,
                    type: "openrouter",
                    contextWindow: m.context_length || m?.context_window || 128000,
                    pricing,
                    strengths: (m?.tags || []).slice(0, 4)
                };
            });
            // Keep local model entry
            if (this.availableModels["local/ollama"]) {
                newMap["local/ollama"] = this.availableModels["local/ollama"];
            }
            this.recommendedModelIds.forEach(id => {
                const curated = this.defaultModels[id];
                if (curated) {
                    newMap[id] = { ...(newMap[id] || {}), ...curated };
                }
            });
            this.availableModels = newMap;
            this._remoteModelsLoaded = true;
        } finally {
            this._isRefreshingModels = false;
        }
    }

    // Try to find best matching model id from remote list when an ID is stale
    findBestMatchingModelId(preferredId) {
        if (this.availableModels[preferredId]) return preferredId;
        const id = (preferredId || "").toLowerCase();
        const tokens = id.split(/[\/:\-_.]+/).filter(Boolean);
        let best = null;
        let bestScore = -1;
        Object.keys(this.availableModels).forEach(candidateId => {
            const c = candidateId.toLowerCase();
            let score = 0;
            tokens.forEach(t => {
                if (!t) return;
                if (c.includes(t)) score += 1;
            });
            // Give extra weight to common markers
            if (c.includes("instruct")) score += 0.5;
            if (c.includes("mistral") && id.includes("mistral")) score += 0.5;
            if (c.includes("small") && id.includes("small")) score += 0.5;
            if (score > bestScore) {
                bestScore = score;
                best = candidateId;
            }
        });
        // Avoid returning unrelated local model unless nothing else
        if (best === "local/ollama" && Object.keys(this.availableModels).length > 1) {
            return null;
        }
        return best;
    }

    _notifyModelChanged() {
        try {
            const detail = { id: this.currentModel };
            if (typeof window !== "undefined" && typeof window.dispatchEvent === "function") {
                window.dispatchEvent(new CustomEvent("llmModelChanged", { detail }));
            }
        } catch (e) {}
    }
}

// Export for usage
window.KimiLLMManager = KimiLLMManager;
export default KimiLLMManager;