File size: 7,032 Bytes
3618a4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from tools import MenuTool, CartTool, OrderTool, greetings_function
from data_section import data_bifercation
from tools.prompts import tool_prompt_function
from config import settings
from utils import client
from context import ollama_context_query, summarised_output
import pandas as pd


class ReactAgent:
    def __init__(self):
        self.store_id = "66dff7a04b17303d454d4bbc"
        self.brand_id = "66cec85093c5b0896c9125c5"
        columns = ["category", "item", "price"]
        main_data, category, items = data_bifercation(self.store_id, self.brand_id)

        self.items = items
        self.category = category

        df = pd.DataFrame(main_data)
        df.columns = columns
        df["item"] = df["item"].str.lower()
        df["category"] = df["category"].str.lower()

        self.df = df
        self.menu_tool = MenuTool(df)
        self.cart_tool = CartTool(df)
        self.order_tool = OrderTool(df)
        self.llm_client = client

    def handle_query(self, session_id, query, chat_history):

        prompt = tool_prompt_function(current_query=query, session_id=session_id)

        context_query, greet_bool = ollama_context_query(
            chat_history=chat_history, user_query=query
        )

        if not greet_bool:
            return greetings_function(query)

        if context_query in ["MenuTool", "CartTool", "OrderTool"]:
            user_message_content = query
        else:
            user_message_content = context_query

        messages = [
            {"role": "system", "content": prompt},
            {"role": "user", "content": user_message_content},
        ]

        response = self.llm_client.chat(
            model=settings.MODEL_NAME,
            messages=messages,
            tools=[
                {
                    "type": "function",
                    "function": {
                        "name": "menu_tool",
                        "description": "Fetch the restaurant menu based on user input",
                        "parameters": {
                            "type": "object",
                            "properties": {
                                "query": {
                                    "type": "string",
                                    "description": "User's natural language query for the menu",
                                }
                            },
                            "required": ["query"],
                        },
                    },
                },
                {
                    "type": "function",
                    "function": {
                        "name": "cart_tool",
                        "description": "Manage the cart based on user input (add/remove/view)",
                        "parameters": {
                            "type": "object",
                            "properties": {
                                "query": {
                                    "type": "string",
                                    "description": "User's cart query to add/remove/view items",
                                },
                                "session_id": {
                                    "type": "string",
                                    "description": "current session id",
                                },
                            },
                            "required": ["query", "session_id"],
                        },
                    },
                },
                {
                    "type": "function",
                    "function": {
                        "name": "order_tool",
                        "description": "Handle order and checkout functionality",
                        "parameters": {
                            "type": "object",
                            "properties": {
                                "query": {
                                    "type": "string",
                                    "description": "User's request to place an order",
                                },
                            },
                            "required": ["query"],
                        },
                    },
                },
            ],
        )

        print("----" * 30)
        print(query)
        print("----" * 30)
        print(response)
        print("----" * 30)

        tool_call = response["message"].get("tool_calls", [])
        tool_calls = [
            tool_call[i].get("function").get("name")
            for i in range(0, len(response["message"].get("tool_calls", [])))
        ]

        print("----" * 30)
        print(tool_call)
        print("----" * 30)
        print(tool_calls)
        print("----" * 30)

        tool_responses = []
        for tool_name in tool_calls:
            if tool_name == "menu_tool":
                tool_call_index = next(
                    (
                        index
                        for index, call in enumerate(tool_call)
                        if call["function"]["name"] == "menu_tool"
                    ),
                    None,
                )
                tool_args = tool_call[tool_call_index]["function"]["arguments"]
                response = self.menu_tool.run(tool_args["query"], session_id)
                print("menu tool response :: ", response)
                tool_responses.append(response)

            elif tool_name == "cart_tool":
                tool_call_index = next(
                    (
                        index
                        for index, call in enumerate(tool_call)
                        if call["function"]["name"] == "cart_tool"
                    ),
                    None,
                )
                tool_args = tool_call[tool_call_index]["function"]["arguments"]
                response = self.cart_tool.run(tool_args["query"], session_id=session_id)
                print("cart tool response :: ", response)
                tool_responses.append(response)

            elif tool_name == "order_tool":
                tool_call_index = next(
                    (
                        index
                        for index, call in enumerate(tool_call)
                        if call["function"]["name"] == "order_tool"
                    ),
                    None,
                )
                tool_args = tool_call[tool_call_index]["function"]["arguments"]
                print("order tool response :: ", response)
                response = self.order_tool.run(
                    df=self.df,
                    session_id=session_id,
                    category=self.category,
                    items=self.items,
                    store_id=self.store_id,
                    brand_id=self.brand_id,
                )
                tool_responses.append(response)

        combined_response = summarised_output(
            messages=tool_responses,
            chat_history=chat_history,
            context_query=context_query,
            user_query=query,
        )

        return combined_response