Spaces:
Sleeping
Sleeping
import gradio as gr | |
from PIL import Image | |
import torch | |
from torchvision import transforms | |
from transformers import AutoModelForImageSegmentation | |
# Carregar o modelo RMBG-2.0 | |
model = AutoModelForImageSegmentation.from_pretrained('briaai/RMBG-2.0', trust_remote_code=True) | |
model.to('cuda' if torch.cuda.is_available() else 'cpu') | |
model.eval() | |
# Função para remover o fundo da imagem | |
def remove_background(image): | |
# Transformações necessárias | |
transform = transforms.Compose([ | |
transforms.Resize((1024, 1024)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
# Aplicar transformações | |
input_image = transform(image).unsqueeze(0).to('cuda' if torch.cuda.is_available() else 'cpu') | |
# Realizar a predição | |
with torch.no_grad(): | |
output = model(input_image)[-1].sigmoid().cpu() | |
# Processar a máscara | |
mask = transforms.ToPILImage()(output[0].squeeze()) | |
mask = mask.resize(image.size) | |
image.putalpha(mask) | |
return image | |
# Configurar a interface do Gradio | |
app = gr.Interface( | |
fn=remove_background, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Image(type="pil"), | |
title="Remoção de Fundo com BRIA AI 2.0" | |
) | |
# Executar o aplicativo | |
if __name__ == "__main__": | |
app.launch(share=True) |