Spaces:
Running
Running
import gradio as gr | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation | |
from PIL import Image | |
import os | |
from functools import partial | |
def resize_image(image, target_size=1024): | |
h_img, w_img = image.size | |
if h_img < w_img: | |
new_h, new_w = target_size, int(w_img * (target_size / h_img)) | |
else: | |
new_h, new_w = int(h_img * (target_size / w_img)), target_size | |
resized_img = image.resize((new_h, new_w)) | |
return resized_img | |
def segment_image(image, preprocessor, model, crop_size = (1024, 1024), num_classes = 40): | |
print(type(image)) | |
h_crop, w_crop = crop_size | |
print(image.size) | |
img = torch.Tensor(np.array(resize_image(image, target_size=1024)).transpose(2, 0, 1)).unsqueeze(0).to(device) | |
batch_size, _, h_img, w_img = img.size() | |
print(img.size()) | |
h_grids = int(np.round(3/2*h_img/h_crop)) if h_img > h_crop else 1 | |
w_grids = int(np.round(3/2*w_img/w_crop)) if w_img > w_crop else 1 | |
print(h_grids, w_grids) | |
h_stride = int((h_img - h_crop + h_grids -1)/(h_grids -1)) if h_grids > 1 else h_crop | |
w_stride = int((w_img - w_crop + w_grids -1)/(w_grids -1)) if w_grids > 1 else w_crop | |
print(h_stride, w_stride) | |
preds = img.new_zeros((batch_size, num_classes, h_img, w_img)) | |
count_mat = img.new_zeros((batch_size, 1, h_img, w_img)) | |
for h_idx in range(h_grids): | |
for w_idx in range(w_grids): | |
y1 = h_idx * h_stride | |
x1 = w_idx * w_stride | |
y2 = min(y1 + h_crop, h_img) | |
x2 = min(x1 + w_crop, w_img) | |
y1 = max(y2 - h_crop, 0) | |
x1 = max(x2 - w_crop, 0) | |
crop_img = img[:, :, y1:y2, x1:x2] | |
print(x1, x2, y1, y2) | |
with torch.no_grad(): | |
inputs = preprocessor(crop_img, return_tensors = "pt") | |
outputs = model(**inputs) | |
resized_logits = F.interpolate( | |
outputs.logits[0].unsqueeze(dim=0), size=crop_img.shape[-2:], mode="bilinear", align_corners=False | |
) | |
preds += F.pad(resized_logits, | |
(int(x1), int(preds.shape[3] - x2), int(y1), | |
int(preds.shape[2] - y2))) | |
count_mat[:, :, y1:y2, x1:x2] += 1 | |
assert (count_mat == 0).sum() == 0 | |
preds = preds / count_mat | |
preds = preds.argmax(dim=1) | |
preds = F.interpolate(preds.unsqueeze(0).type(torch.uint8), size=image.size[::-1], mode='nearest') | |
label_pred = preds.squeeze().cpu().numpy() | |
# label_pred_colors = np.array([[id2color[pixel] for pixel in row] for row in np.array(label_pred)]) | |
# mask_image = Image.fromarray(label_pred_colors.astype(np.uint8), 'RGB') | |
# overlay = Image.blend(image.convert("RGBA"), mask_image.convert("RGBA"), alpha=0.6) | |
# return overlay | |
seg_info = [(label_pred == int(id), label) for id, label in id2label.items()] | |
return (image, seg_info) | |
# # Create Gradio interface | |
# interface = gr.Interface( | |
# fn=segment_image, | |
# inputs=[gr.Image(type="pil")], | |
# outputs=[gr.Image(type="pil")], | |
# title="Coral Segmentation with SegFormer", | |
# description="Official demo for **Coralscapes**", | |
# examples=example_files | |
# ) | |
# # Launch the demo | |
# interface.launch() | |
if __name__ == "__main__": | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
print(device) | |
# Load model and processor | |
preprocessor = SegformerImageProcessor.from_pretrained("EPFL-ECEO/segformer-b2-finetuned-coralscapes-1024-1024") | |
model = SegformerForSemanticSegmentation.from_pretrained("EPFL-ECEO/segformer-b2-finetuned-coralscapes-1024-1024").to(device) | |
model.eval() | |
id2label = {"1": "seagrass", "2": "trash", "3": "other coral dead", "4": "other coral bleached", "5": "sand", "6": "other coral alive", "7": "human", "8": "transect tools", "9": "fish", "10": "algae covered substrate", "11": "other animal", "12": "unknown hard substrate", "13": "background", "14": "dark", "15": "transect line", "16": "massive/meandering bleached", "17": "massive/meandering alive", "18": "rubble", "19": "branching bleached", "20": "branching dead", "21": "millepora", "22": "branching alive", "23": "massive/meandering dead", "24": "clam", "25": "acropora alive", "26": "sea cucumber", "27": "turbinaria", "28": "table acropora alive", "29": "sponge", "30": "anemone", "31": "pocillopora alive", "32": "table acropora dead", "33": "meandering bleached", "34": "stylophora alive", "35": "sea urchin", "36": "meandering alive", "37": "meandering dead", "38": "crown of thorn", "39": "dead clam"} | |
label2color = {"human": [255, 0, 0], "background": [29, 162, 216], "fish": [255, 255, 0], "sand": [194, 178, 128], "rubble": [161, 153, 128], "unknown hard substrate": [125, 125, 125], "algae covered substrate": [125, 163, 125], "dark": [31, 31, 31], "branching bleached": [252, 231, 240], "branching dead": [123, 50, 86], "branching alive": [226, 91, 157], "stylophora alive": [255, 111, 194], "pocillopora alive": [255, 146, 150], "acropora alive": [236, 128, 255], "table acropora alive": [189, 119, 255], "table acropora dead": [85, 53, 116], "millepora": [244, 150, 115], "turbinaria": [228, 255, 119], "other coral bleached": [250, 224, 225], "other coral dead": [114, 60, 61], "other coral alive": [224, 118, 119], "massive/meandering alive": [236, 150, 21], "massive/meandering dead": [134, 86, 18], "massive/meandering bleached": [255, 248, 228], "meandering alive": [230, 193, 0], "meandering dead": [119, 100, 14], "meandering bleached": [251, 243, 216], "transect line": [0, 255, 0], "transect tools": [8, 205, 12], "sea urchin": [0, 142, 255], "sea cucumber": [0, 231, 255], "anemone": [0, 255, 189], "sponge": [240, 80, 80], "clam": [189, 255, 234], "other animal": [0, 255, 255], "trash": [255, 0, 134], "seagrass": [125, 222, 125], "crown of thorn": [179, 245, 234], "dead clam": [89, 155, 134]} | |
label2colorhex = {k:'#%02x%02x%02x' % tuple(v) for k,v in label2color.items()} | |
print(label2colorhex) | |
with gr.Blocks(title="Coral Segmentation with SegFormer") as demo: | |
gr.Markdown("""<h1><center>Coral Segmentation with SegFormer</center></h1>""") | |
with gr.Row(): | |
img_input = gr.Image(type="pil", label="Input image") | |
# img_output = gr.Image(type="pil", label="Predictions") | |
img_output = gr.AnnotatedImage(label="Predictions", color_map=label2colorhex) | |
section_btn = gr.Button("Segment Image") | |
section_btn.click(partial(segment_image, preprocessor=preprocessor, model=model), img_input, img_output) | |
example_files = os.listdir('assets/examples') | |
example_files.sort() | |
print(example_files) | |
example_files = [os.path.join('assets/examples', filename) for filename in example_files] | |
gr.Examples(examples=example_files, inputs=img_input, outputs=img_output) | |
demo.launch() |