Vijish commited on
Commit
6e99f64
·
verified ·
1 Parent(s): 87b3290

Upload 2 files

Browse files
Files changed (2) hide show
  1. utils/i2i.py +100 -0
  2. utils/t2i.py +68 -0
utils/i2i.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import os
4
+ import numpy as np
5
+ from lib_layerdiffuse.pipeline_flux_img2img import FluxImg2ImgPipeline
6
+ from lib_layerdiffuse.vae import TransparentVAE, pad_rgb
7
+ from torchvision import transforms
8
+ from PIL import Image
9
+ import spaces
10
+
11
+ HF_TOKEN = os.getenv("HF_TOKEN")
12
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
13
+
14
+ def seed_everything(seed: int) -> torch.Generator:
15
+ torch.manual_seed(seed)
16
+ torch.cuda.manual_seed_all(seed)
17
+ np.random.seed(seed)
18
+ generator = torch.Generator(device=device)
19
+ generator.manual_seed(seed)
20
+ return generator
21
+
22
+ # Initialize the pipeline
23
+ i2i_pipe = FluxImg2ImgPipeline.from_pretrained(
24
+ "black-forest-labs/FLUX.1-dev",
25
+ torch_dtype=torch.bfloat16,
26
+ use_auth_token=HF_TOKEN
27
+ ).to(device)
28
+
29
+ # Load the LoRA weights
30
+ i2i_pipe.load_lora_weights("RedAIGC/Flux-version-LayerDiffuse", weight_name="layerlora.safetensors")
31
+
32
+ # Initialize the transparent VAE
33
+ trans_vae = TransparentVAE(i2i_pipe.vae, i2i_pipe.vae.dtype)
34
+ trans_vae.load_state_dict(torch.load("./models/TransparentVAE.pth"), strict=False)
35
+ trans_vae.to(device)
36
+
37
+ @spaces.GPU(duration=120)
38
+ def i2i_gen(
39
+ input_image,
40
+ prompt: str,
41
+ seed: int = 1111,
42
+ guidance_scale: float = 7.0,
43
+ num_inference_steps: int = 50,
44
+ strength: float = 0.8,
45
+ ):
46
+ if input_image is None:
47
+ return None
48
+
49
+ # Process the input image
50
+ original_image = (transforms.ToTensor()(input_image)).unsqueeze(0)
51
+
52
+ # Get dimensions from the input image
53
+ height, width = original_image.shape[2], original_image.shape[3]
54
+
55
+ # Prepare the image for processing
56
+ padding_feed = [x for x in original_image.movedim(1, -1).float().cpu().numpy()]
57
+ list_of_np_rgb_padded = [pad_rgb(x) for x in padding_feed]
58
+ rgb_padded_bchw_01 = torch.from_numpy(np.stack(list_of_np_rgb_padded, axis=0)).float().movedim(-1, 1).to(device)
59
+
60
+ original_image_feed = original_image.clone()
61
+ original_image_feed[:, :3, :, :] = original_image_feed[:, :3, :, :] * 2.0 - 1.0
62
+ original_image_rgb = original_image_feed[:, :3, :, :] * original_image_feed[:, 3:, :, :]
63
+
64
+ original_image_feed = original_image_feed.to(device)
65
+ original_image_rgb = original_image_rgb.to(device)
66
+
67
+ # Generate the initial latent
68
+ initial_latent = trans_vae.encode(original_image_feed, original_image_rgb, rgb_padded_bchw_01, use_offset=True)
69
+
70
+ # Generate the image
71
+ latents = i2i_pipe(
72
+ latents=initial_latent,
73
+ image=original_image,
74
+ prompt=prompt,
75
+ height=height,
76
+ width=width,
77
+ num_inference_steps=num_inference_steps,
78
+ output_type="latent",
79
+ generator=seed_everything(seed),
80
+ guidance_scale=guidance_scale,
81
+ strength=strength,
82
+ ).images
83
+
84
+ # Process the latents
85
+ latents = i2i_pipe._unpack_latents(latents, height, width, i2i_pipe.vae_scale_factor)
86
+ latents = (latents / i2i_pipe.vae.config.scaling_factor) + i2i_pipe.vae.config.shift_factor
87
+
88
+ # Decode the latents
89
+ with torch.no_grad():
90
+ original_x, x = trans_vae.decode(latents)
91
+
92
+ # Convert to image
93
+ x = x.clamp(0, 1)
94
+ x = x.permute(0, 2, 3, 1)
95
+ img = Image.fromarray((x*255).float().cpu().numpy().astype(np.uint8)[0])
96
+
97
+ # Clean up
98
+ torch.cuda.empty_cache()
99
+
100
+ return img
utils/t2i.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import argparse
4
+ import os
5
+ import datetime
6
+ from diffusers import FluxPipeline
7
+ from lib_layerdiffuse.pipeline_flux_img2img import FluxImg2ImgPipeline
8
+ from lib_layerdiffuse.vae import TransparentVAE, pad_rgb
9
+ import numpy as np
10
+ from torchvision import transforms
11
+ from safetensors.torch import load_file
12
+ from PIL import Image, ImageDraw, ImageFont
13
+ import spaces
14
+
15
+ HF_TOKEN = os.getenv("HF_TOKEN")
16
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
17
+
18
+ def seed_everything(seed: int) -> torch.Generator:
19
+ torch.manual_seed(seed)
20
+ torch.cuda.manual_seed_all(seed)
21
+ np.random.seed(seed)
22
+ generator = torch.Generator()
23
+ generator.manual_seed(seed)
24
+ return generator
25
+
26
+ t2i_pipe = FluxPipeline.from_pretrained(
27
+ "black-forest-labs/FLUX.1-dev",
28
+ torch_dtype=torch.bfloat16,
29
+ use_auth_token=HF_TOKEN
30
+ ).to(device)
31
+
32
+ trans_vae = TransparentVAE(t2i_pipe.vae, t2i_pipe.vae.dtype)
33
+ trans_vae.load_state_dict(torch.load("./models/TransparentVAE.pth"), strict=False)
34
+ trans_vae.to(device)
35
+
36
+ @spaces.GPU(duration=120)
37
+ def t2i_gen(
38
+ prompt: str,
39
+ # negative_prompt: str = None,
40
+ seed: int = 1111,
41
+ width: int = 1024,
42
+ height: int = 1024,
43
+ guidance_scale: float = 3.5,
44
+ num_inference_steps: int = 50,
45
+ ):
46
+ t2i_pipe.load_lora_weights("RedAIGC/Flux-version-LayerDiffuse", weight_name="layerlora.safetensors")
47
+ latents = t2i_pipe(
48
+ prompt=prompt,
49
+ height=height,
50
+ width=width,
51
+ num_inference_steps=num_inference_steps,
52
+ output_type="latent",
53
+ generator=seed_everything(seed),
54
+ guidance_scale=guidance_scale,
55
+ ).images
56
+
57
+ latents = t2i_pipe._unpack_latents(latents, height, width, t2i_pipe.vae_scale_factor)
58
+ latents = (latents / t2i_pipe.vae.config.scaling_factor) + t2i_pipe.vae.config.shift_factor
59
+
60
+ with torch.no_grad():
61
+ original_x, x = trans_vae.decode(latents)
62
+
63
+ x = x.clamp(0, 1)
64
+ x = x.permute(0, 2, 3, 1)
65
+ img = Image.fromarray((x*255).float().cpu().numpy().astype(np.uint8)[0])
66
+ torch.cuda.empty_cache()
67
+
68
+ return img