VidyaPeddinti commited on
Commit
234fb26
·
verified ·
1 Parent(s): 2259dd0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -40
app.py CHANGED
@@ -1,48 +1,53 @@
1
  import gradio as gr
2
- from transformers import AutoModelForCausalLM, AutoTokenizer
3
- import torch
4
- import os
5
-
6
- # Get the Hugging Face token from environment variables
7
- hf_token = os.getenv("API_KEY")
8
-
9
-
10
-
11
- # Load model and tokenizer
12
- model_name = "mistralai/Mistral-7B-v0.1"
13
- model = AutoModelForCausalLM.from_pretrained(
14
- model_name,
15
- device_map="auto",
16
- use_auth_token=hf_token
17
- )
18
- tokenizer = AutoTokenizer.from_pretrained(
19
- model_name,
20
- use_auth_token=hf_token
21
- )
22
-
23
- # Define the generation function
24
- def generate_response(prompt):
25
- # Tokenize input text
26
- inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
27
-
28
- # Generate response
29
- generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=True)
 
 
 
 
 
30
 
31
- # Decode and return response
32
- return tokenizer.decode(generated_ids[0], skip_special_tokens=True)
33
 
34
- # Set up Gradio interface
35
- with gr.Blocks() as demo:
36
- gr.Markdown("# Text Generation")
37
- input_text = gr.Textbox(placeholder="Enter your input here", lines=2)
38
- output_text = gr.Textbox(label="Generated Output", lines=2)
39
- submit_btn = gr.Button("Generate")
40
 
41
- submit_btn.click(generate_response, inputs=input_text, outputs=output_text)
42
 
43
- # Launch the interface
44
- if __name__ == "__main__":
45
- demo.launch()
46
 
47
 
48
 
 
1
  import gradio as gr
2
+
3
+ gr.load("models/mistralai/Mistral-7B-v0.1").launch()
4
+
5
+
6
+ # import gradio as gr
7
+ # from transformers import AutoModelForCausalLM, AutoTokenizer
8
+ # import torch
9
+ # import os
10
+
11
+ # # Get the Hugging Face token from environment variables
12
+ # hf_token = os.getenv("API_KEY")
13
+
14
+
15
+
16
+ # # Load model and tokenizer
17
+ # model_name = "mistralai/Mistral-7B-v0.1"
18
+ # model = AutoModelForCausalLM.from_pretrained(
19
+ # model_name,
20
+ # device_map="auto",
21
+ # use_auth_token=hf_token
22
+ # )
23
+ # tokenizer = AutoTokenizer.from_pretrained(
24
+ # model_name,
25
+ # use_auth_token=hf_token
26
+ # )
27
+
28
+ # # Define the generation function
29
+ # def generate_response(prompt):
30
+ # # Tokenize input text
31
+ # inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
32
+
33
+ # # Generate response
34
+ # generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=True)
35
 
36
+ # # Decode and return response
37
+ # return tokenizer.decode(generated_ids[0], skip_special_tokens=True)
38
 
39
+ # # Set up Gradio interface
40
+ # with gr.Blocks() as demo:
41
+ # gr.Markdown("# Text Generation")
42
+ # input_text = gr.Textbox(placeholder="Enter your input here", lines=2)
43
+ # output_text = gr.Textbox(label="Generated Output", lines=2)
44
+ # submit_btn = gr.Button("Generate")
45
 
46
+ # submit_btn.click(generate_response, inputs=input_text, outputs=output_text)
47
 
48
+ # # Launch the interface
49
+ # if __name__ == "__main__":
50
+ # demo.launch()
51
 
52
 
53