Victorlopo21 commited on
Commit
84f2a5a
·
1 Parent(s): 5595fa0

Upload whisper_microphone.py

Browse files
Files changed (1) hide show
  1. whisper_microphone.py +57 -0
whisper_microphone.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """whisper_microphone.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1nvViL6jAkzpXX3quqkz2I44m70S-YN8t
8
+
9
+ # Using gradio for making a nice UI.
10
+ Upload audio file version.
11
+
12
+ Installing requirements.
13
+ """
14
+
15
+ !pip install gradio
16
+ !pip install git+https://github.com/huggingface/transformers
17
+
18
+ from transformers import pipeline
19
+ import gradio as gr
20
+ import os
21
+
22
+ """## Building a Demo
23
+
24
+ Now that we've fine-tuned our model we can build a demo to show
25
+ off its ASR capabilities! We'll make use of 🤗 Transformers
26
+ `pipeline`, which will take care of the entire ASR pipeline,
27
+ right from pre-processing the audio inputs to decoding the
28
+ model predictions.
29
+
30
+ Running the example below will generate a Gradio demo where can input audio to
31
+ our fine-tuned Whisper model to transcribe the corresponding text:
32
+ """
33
+
34
+ from transformers import WhisperTokenizer
35
+ from transformers import WhisperProcessor
36
+
37
+
38
+
39
+ pipe = pipeline(model="Victorlopo21/whisper-medium-gl-30")
40
+ # change to "your-username/the-name-you-picked"
41
+
42
+ def transcribe(audio):
43
+ text = pipe(audio)['text']
44
+ return text
45
+
46
+ iface = gr.Interface(
47
+ fn=transcribe,
48
+ inputs=gr.Audio(source='microphone', type="filepath"),
49
+ outputs="text",
50
+ title="Whisper Small Galician",
51
+ description="Realtime demo for Galician speech recognition using a fine-tuned Whisper small model.",
52
+ )
53
+
54
+ iface.launch(debug=True)
55
+
56
+ # TO TRY
57
+