Victorlopo21 commited on
Commit
699f5e3
·
1 Parent(s): 92e0d15

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -59
app.py CHANGED
@@ -11,42 +11,22 @@ import numpy as np
11
  import cpi
12
  from sklearn.preprocessing import MinMaxScaler
13
  from huggingface_hub import hf_hub_download
14
-
15
- #cpi.update()
16
-
17
  import gradio as gr
18
-
19
  from huggingface_hub import notebook_login
20
  notebook_login()
21
  import hopsworks
22
 
23
- # from huggingface_hub import hf_hub_download
24
- # m = hf_hub_download(repo_id="marvmk/model-test", filename="model.pkl")
25
-
26
- project = hopsworks.login(api_key_value="4CY1rwa8iz8Yu6gG.TwayrYmsX4GQfhSp3LNKYTLvyFMfqAvnzNUQp5ae9K5HhfYxb5mcnLAutm1K18zV")
27
- fs = project.get_feature_store()
28
-
29
- mr = project.get_model_registry()
30
- #model = mr.get_model("stock_price_modal")
31
- #model_dir = model.download()
32
- #model = joblib.load(model_dir + "/stock_price_model.pkl")
33
- model = keras.models.load_model('model_stock_prices.h5')
34
-
35
-
36
- #from huggingface_hub import hf_hub_download
37
- #m = hf_hub_download(repo_id="marvmk/model-test", filename="model.pkl")
38
- #model = pickle.load(open(m, 'rb'))
39
 
40
 
41
- #m=model_dir + "stock_model.pkl"
42
- #with open(m, "rb") as f:
43
- # model = pickle.load(f)
44
-
45
 
 
46
 
47
 
48
 
49
- #model = pickle.load(open(m, 'rb'))
50
 
51
  # downloading the last 10 days to make the prediction
52
  from datetime import date
@@ -82,37 +62,8 @@ for x in hist.index:
82
 
83
  hist['Inflation'] = inflation
84
  hist['CPI'] = cpi_col
85
-
86
-
87
-
88
  hist['Quarter_end'] = np.where(hist.index.month%3==0,1,0)
89
 
90
- # def build_sequences(nump, target_labels=['Close'], window=10, stride=1, telescope=1):
91
- # # Sanity check to avoid runtime errors
92
- # df = pd.DataFrame(nump, columns = ['Open','High','Low','Close','Volume','Inflation', 'CPI', 'Quarter_end'])
93
- # assert window % stride == 0
94
- # dataset = []
95
- # labels = []
96
- # temp_df = df.copy().values
97
- # temp_label = df[target_labels].copy().values
98
- # padding_len = len(df)%window
99
-
100
- # if(padding_len != 0):
101
- # # Compute padding length
102
- # padding_len = window - len(df)%window
103
- # padding = np.zeros((padding_len,temp_df.shape[1]), dtype='float64')
104
- # temp_df = np.concatenate((padding,df))
105
- # padding = np.zeros((padding_len,temp_label.shape[1]), dtype='float64')
106
- # temp_label = np.concatenate((padding,temp_label))
107
- # assert len(temp_df) % window == 0
108
-
109
- # for idx in np.arange(0,len(temp_df)-window-telescope,stride):
110
- # dataset.append(temp_df[idx:idx+window])
111
- # labels.append(temp_label[idx+window:idx+window+telescope])
112
-
113
- # dataset = np.array(dataset)
114
- # labels = np.array(labels)
115
- # return dataset, labels
116
 
117
 
118
 
@@ -120,7 +71,6 @@ s = hf_hub_download(repo_id="marvmk/scalable_project", filename="scaler.save", r
120
  scaler = joblib.load(s)
121
 
122
  inp = scaler.transform(hist.to_numpy())
123
- #inp = scaler.inverse_transform(inp)
124
 
125
  df = inp
126
  temp_df = pd.DataFrame(inp, columns = ['Open','High','Low','Close','Volume','Inflation', 'CPI', 'Quarter_end'])
@@ -134,12 +84,8 @@ predictions = model.predict(ds)
134
  predictions
135
  p = predictions[0][0][0]
136
  p = float(p)
137
- p
138
- #print(p)
139
  a = np.array([0,0,0,p,0,0,0,0])
140
- a
141
  a = scaler.inverse_transform(a.reshape(1,-1))
142
- a
143
 
144
 
145
  final_prediction = a[-1][3]
 
11
  import cpi
12
  from sklearn.preprocessing import MinMaxScaler
13
  from huggingface_hub import hf_hub_download
 
 
 
14
  import gradio as gr
 
15
  from huggingface_hub import notebook_login
16
  notebook_login()
17
  import hopsworks
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
 
21
+ st.write("""
22
+ # Stock Price Prediction
23
+ Shown is the stock prediction of the next working day taking into account the last 10 working days
24
+ """)
25
 
26
+ model = keras.models.load_model('model_stock_prices.h5')
27
 
28
 
29
 
 
30
 
31
  # downloading the last 10 days to make the prediction
32
  from datetime import date
 
62
 
63
  hist['Inflation'] = inflation
64
  hist['CPI'] = cpi_col
 
 
 
65
  hist['Quarter_end'] = np.where(hist.index.month%3==0,1,0)
66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
 
69
 
 
71
  scaler = joblib.load(s)
72
 
73
  inp = scaler.transform(hist.to_numpy())
 
74
 
75
  df = inp
76
  temp_df = pd.DataFrame(inp, columns = ['Open','High','Low','Close','Volume','Inflation', 'CPI', 'Quarter_end'])
 
84
  predictions
85
  p = predictions[0][0][0]
86
  p = float(p)
 
 
87
  a = np.array([0,0,0,p,0,0,0,0])
 
88
  a = scaler.inverse_transform(a.reshape(1,-1))
 
89
 
90
 
91
  final_prediction = a[-1][3]