import streamlit as st from transformers import ( AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig ) import torch # 1. Configuraci贸n del Modelo @st.cache_resource def load_model(): try: # Configuraci贸n correcta para M1/M2 quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, # Usar bfloat16 para MPS bnb_4bit_use_double_quant=True ) model = AutoModelForCausalLM.from_pretrained( "HuggingFaceH4/zephyr-7b-beta", device_map="mps", # Forzar uso de Metal quantization_config=quantization_config, torch_dtype=torch.bfloat16, # Tipo de dato compatible trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained( "microsoft/Phi-3-mini-4k-instruct" ) return model, tokenizer except Exception as e: st.error(f"Error cargando el modelo: {str(e)}") return None, None # 2. Interfaz de Streamlit st.title("馃 Chatbot Optimizado para M1") st.markdown("Usando Microsoft Phi-3-mini - [Hugging Face](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)") # 3. Inicializaci贸n de Sesi贸n if "messages" not in st.session_state: st.session_state.messages = [ {"role": "assistant", "content": "隆Hola! Soy tu asistente AI. 驴En qu茅 puedo ayudarte?"} ] # 4. Carga del Modelo model, tokenizer = load_model() # 5. Funci贸n de Generaci贸n def generate_response(prompt): try: messages = [ {"role": "user", "content": prompt} ] inputs = tokenizer.apply_chat_template( messages, return_tensors="pt" ).to(model.device) outputs = model.generate( inputs, max_new_tokens=512, temperature=0.7, top_p=0.9, do_sample=True, pad_token_id=tokenizer.eos_token_id ) return tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True) except Exception as e: return f"Error generando respuesta: {str(e)}" # 6. Interacci贸n del Usuario for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if prompt := st.chat_input("Escribe tu mensaje..."): # Mostrar input del usuario st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) # Generar respuesta with st.chat_message("assistant"): with st.spinner("Pensando..."): response = generate_response(prompt) st.markdown(response) st.session_state.messages.append({"role": "assistant", "content": response})