File size: 21,982 Bytes
3e0f6bf 14cac88 3e0f6bf 14cac88 3e0f6bf 94a2f2d 3e0f6bf 14cac88 3e0f6bf 14cac88 3e0f6bf 14cac88 3e0f6bf 14cac88 3e0f6bf 14cac88 3e0f6bf 14cac88 3e0f6bf 14cac88 3e0f6bf 14cac88 3e0f6bf 14cac88 3e0f6bf 94a2f2d 14cac88 94a2f2d 14cac88 94a2f2d 14cac88 94a2f2d 14cac88 94a2f2d 14cac88 94a2f2d 14cac88 3e0f6bf 94a2f2d 14cac88 5b61be5 14cac88 3e0f6bf 14cac88 883c203 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 |
import gradio as gr
import time
from pprint import pprint
import numpy
import os
from pathlib import Path
from FastT5 import OnnxT5, get_onnx_runtime_sessions
from transformers import T5ForConditionalGeneration, T5Tokenizer, AutoTokenizer
from flashtext import KeywordProcessor
from nltk.tokenize import sent_tokenize
from similarity.normalized_levenshtein import NormalizedLevenshtein
from nltk.corpus import brown
from nltk.corpus import stopwords
from nltk import FreqDist
import nltk
import pke
import string
from collections import OrderedDict
from sense2vec import Sense2Vec
import spacy
import random
import torch
commands = [
"curl -LO https://github.com/explosion/sense2vec/releases/download/v1.0.0/s2v_reddit_2015_md.tar.gz",
"tar -xvf s2v_reddit_2015_md.tar.gz",
]
for command in commands:
return_code = os.system(command)
if return_code == 0:
print(f"Command '{command}' executed successfully")
else:
print(f"Command '{command}' failed with return code {return_code}")
def greedy_decoding(inp_ids, attn_mask, model, tokenizer):
greedy_output = model.generate(
input_ids=inp_ids, attention_mask=attn_mask, max_length=256)
Question = tokenizer.decode(
greedy_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
return Question.strip().capitalize()
def beam_search_decoding(inp_ids, attn_mask, model, tokenizer):
beam_output = model.generate(input_ids=inp_ids,
attention_mask=attn_mask,
max_length=256,
num_beams=10,
num_return_sequences=3,
no_repeat_ngram_size=2,
early_stopping=True
)
Questions = [tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True) for out in
beam_output]
return [Question.strip().capitalize() for Question in Questions]
def topkp_decoding(inp_ids, attn_mask, model, tokenizer):
topkp_output = model.generate(input_ids=inp_ids,
attention_mask=attn_mask,
max_length=256,
do_sample=True,
top_k=40,
top_p=0.80,
num_return_sequences=3,
no_repeat_ngram_size=2,
early_stopping=True
)
Questions = [tokenizer.decode(
out, skip_special_tokens=True, clean_up_tokenization_spaces=True) for out in topkp_output]
return [Question.strip().capitalize() for Question in Questions]
nltk.download('brown')
nltk.download('stopwords')
nltk.download('popular')
def MCQs_available(word, s2v):
word = word.replace(" ", "_")
sense = s2v.get_best_sense(word)
return sense is not None
def edits(word):
"All edits that are one edit away from `word`."
letters = f'abcdefghijklmnopqrstuvwxyz {string.punctuation}'
splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]
deletes = [L + R[1:] for L, R in splits if R]
transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R) > 1]
replaces = [L + c + R[1:] for L, R in splits if R for c in letters]
inserts = [L + c + R for L, R in splits for c in letters]
return set(deletes + transposes + replaces + inserts)
def sense2vec_get_words(word, s2v):
output = []
word_preprocessed = word.translate(
word.maketrans("", "", string.punctuation))
word_preprocessed = word_preprocessed.lower()
word_edits = edits(word_preprocessed)
word = word.replace(" ", "_")
sense = s2v.get_best_sense(word)
most_similar = s2v.most_similar(sense, n=15)
compare_list = [word_preprocessed]
for each_word in most_similar:
append_word = each_word[0].split("|")[0].replace("_", " ")
append_word = append_word.strip()
append_word_processed = append_word.lower()
append_word_processed = append_word_processed.translate(
append_word_processed.maketrans("", "", string.punctuation))
if append_word_processed not in compare_list and word_preprocessed not in append_word_processed and append_word_processed not in word_edits:
output.append(append_word.title())
compare_list.append(append_word_processed)
return list(OrderedDict.fromkeys(output))
def get_options(answer, s2v):
distractors = []
try:
distractors = sense2vec_get_words(answer, s2v)
if len(distractors) > 0:
print(" Sense2vec_distractors successful for word : ", answer)
return distractors, "sense2vec"
except Exception:
print(" Sense2vec_distractors failed for word : ", answer)
return distractors, "None"
def tokenize_sentences(text):
sentences = [sent_tokenize(text)]
sentences = [y for x in sentences for y in x]
return [sentence.strip() for sentence in sentences if len(sentence) > 20]
def get_sentences_for_keyword(keywords, sentences):
keyword_processor = KeywordProcessor()
keyword_sentences = {}
for word in keywords:
word = word.strip()
keyword_sentences[word] = []
keyword_processor.add_keyword(word)
for sentence in sentences:
keywords_found = keyword_processor.extract_keywords(sentence)
for key in keywords_found:
keyword_sentences[key].append(sentence)
for key, values in keyword_sentences.items():
values = sorted(values, key=len, reverse=True)
keyword_sentences[key] = values
delete_keys = [k for k, v in keyword_sentences.items() if len(v) == 0]
for del_key in delete_keys:
del keyword_sentences[del_key]
return keyword_sentences
def is_far(words_list, currentword, thresh, normalized_levenshtein):
threshold = thresh
score_list = [
normalized_levenshtein.distance(word.lower(), currentword.lower())
for word in words_list
]
return min(score_list) >= threshold
def filter_phrases(phrase_keys, max, normalized_levenshtein):
filtered_phrases = []
if len(phrase_keys) > 0:
filtered_phrases.append(phrase_keys[0])
for ph in phrase_keys[1:]:
if is_far(filtered_phrases, ph, 0.7, normalized_levenshtein):
filtered_phrases.append(ph)
if len(filtered_phrases) >= max:
break
return filtered_phrases
def get_nouns_multipartite(text):
out = []
extractor = pke.unsupervised.MultipartiteRank()
extractor.load_document(input=text, language='en')
pos = {'PROPN', 'NOUN'}
stoplist = list(string.punctuation)
stoplist += stopwords.words('english')
extractor.candidate_selection(pos=pos)
# 4. build the Multipartite graph and rank candidates using random walk,
# alpha controls the weight adjustment mechanism, see TopicRank for
# threshold/method parameters.
try:
extractor.candidate_weighting(alpha=1.1,
threshold=0.75,
method='average')
except Exception:
return out
keyphrases = extractor.get_n_best(n=10)
out.extend(key[0] for key in keyphrases)
return out
def get_phrases(doc):
phrases = {}
for np in doc.noun_chunks:
phrase = np.text
len_phrase = len(phrase.split())
if len_phrase > 1:
phrases[phrase] = 1 if phrase not in phrases else phrases[phrase]+1
phrase_keys = list(phrases.keys())
phrase_keys = sorted(phrase_keys, key=lambda x: len(x), reverse=True)
return phrase_keys[:50]
def get_keywords(nlp, text, max_keywords, s2v, fdist, normalized_levenshtein, no_of_sentences):
doc = nlp(text)
max_keywords = int(max_keywords)
keywords = get_nouns_multipartite(text)
keywords = sorted(keywords, key=lambda x: fdist[x])
keywords = filter_phrases(keywords, max_keywords, normalized_levenshtein)
phrase_keys = get_phrases(doc)
filtered_phrases = filter_phrases(
phrase_keys, max_keywords, normalized_levenshtein)
total_phrases = keywords + filtered_phrases
total_phrases_filtered = filter_phrases(total_phrases, min(
max_keywords, 2*no_of_sentences), normalized_levenshtein)
answers = []
for answer in total_phrases_filtered:
if answer not in answers and MCQs_available(answer, s2v):
answers.append(answer)
return answers[:max_keywords]
def generate_questions_mcq(keyword_sent_mapping, device, tokenizer, model, sense2vec, normalized_levenshtein):
batch_text = []
answers = keyword_sent_mapping.keys()
for answer in answers:
txt = keyword_sent_mapping[answer]
context = f"context: {txt}"
text = f"{context} answer: {answer} </s>"
batch_text.append(text)
encoding = tokenizer.batch_encode_plus(
batch_text, pad_to_max_length=True, return_tensors="pt")
print("Running model for generation")
input_ids, attention_masks = encoding["input_ids"].to(
device), encoding["attention_mask"].to(device)
with torch.no_grad():
outs = model.generate(input_ids=input_ids,
attention_mask=attention_masks,
max_length=150)
output_array = {"questions": []}
# print(outs)
for index, val in enumerate(answers):
out = outs[index, :]
dec = tokenizer.decode(out, skip_special_tokens=True,
clean_up_tokenization_spaces=True)
Question = dec.replace("question:", "")
Question = Question.strip()
individual_question = {
"question_statement": Question,
"question_type": "MCQ",
"answer": val,
"id": index + 1,
}
individual_question["options"], individual_question["options_algorithm"] = get_options(
val, sense2vec)
individual_question["options"] = filter_phrases(
individual_question["options"], 10, normalized_levenshtein)
index = 3
individual_question["extra_options"] = individual_question["options"][index:]
individual_question["options"] = individual_question["options"][:index]
individual_question["context"] = keyword_sent_mapping[val]
if len(individual_question["options"]) > 0:
output_array["questions"].append(individual_question)
return output_array
# for normal one word questions
def generate_normal_questions(keyword_sent_mapping, device, tokenizer, model):
batch_text = []
answers = keyword_sent_mapping.keys()
for answer in answers:
txt = keyword_sent_mapping[answer]
context = f"context: {txt}"
text = f"{context} answer: {answer} </s>"
batch_text.append(text)
encoding = tokenizer.batch_encode_plus(
batch_text, pad_to_max_length=True, return_tensors="pt")
print("Running model for generation")
input_ids, attention_masks = encoding["input_ids"].to(
device), encoding["attention_mask"].to(device)
with torch.no_grad():
outs = model.generate(input_ids=input_ids,
attention_mask=attention_masks,
max_length=150)
output_array = {"questions": []}
for index, val in enumerate(answers):
out = outs[index, :]
dec = tokenizer.decode(out, skip_special_tokens=True,
clean_up_tokenization_spaces=True)
Question = dec.replace('question:', '')
Question = Question.strip()
individual_quest = {
'Question': Question,
'Answer': val,
"id": index + 1,
"context": keyword_sent_mapping[val],
}
output_array["questions"].append(individual_quest)
return output_array
def random_choice():
a = random.choice([0, 1])
return bool(a)
nltk.download('brown')
nltk.download('stopwords')
nltk.download('popular')
class QGen:
def __init__(self):
trained_model_path = './model/'
pretrained_model_name = Path(trained_model_path).stem
encoder_path = os.path.join(
trained_model_path, f"{pretrained_model_name}-encoder_quantized.onnx")
decoder_path = os.path.join(
trained_model_path, f"{pretrained_model_name}-decoder_quantized.onnx")
init_decoder_path = os.path.join(
trained_model_path, f"{pretrained_model_name}-init-decoder_quantized.onnx")
model_paths = encoder_path, decoder_path, init_decoder_path
model_sessions = get_onnx_runtime_sessions(model_paths)
model = OnnxT5(trained_model_path, model_sessions)
self.tokenizer = AutoTokenizer.from_pretrained(trained_model_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# model.eval()
self.device = device
self.model = model
self.nlp = spacy.load('en_core_web_sm')
self.s2v = Sense2Vec().from_disk('s2v_old')
self.fdist = FreqDist(brown.words())
self.normalized_levenshtein = NormalizedLevenshtein()
self.set_seed(42)
def set_seed(self, seed):
numpy.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def predict_mcq(self, payload):
start = time.time()
inp = {
"input_text": payload.get("input_text"),
"max_questions": payload.get("max_questions", 4)
}
text = inp['input_text']
sentences = tokenize_sentences(text)
joiner = " "
modified_text = joiner.join(sentences)
keywords = get_keywords(
self.nlp, modified_text, inp['max_questions'], self.s2v, self.fdist, self.normalized_levenshtein, len(sentences))
keyword_sentence_mapping = get_sentences_for_keyword(
keywords, sentences)
for k in keyword_sentence_mapping.keys():
text_snippet = " ".join(keyword_sentence_mapping[k][:3])
keyword_sentence_mapping[k] = text_snippet
final_output = {}
if len(keyword_sentence_mapping.keys()) != 0:
try:
generated_questions = generate_questions_mcq(
keyword_sentence_mapping, self.device, self.tokenizer, self.model, self.s2v, self.normalized_levenshtein)
except Exception:
return final_output
end = time.time()
final_output["statement"] = modified_text
final_output["questions"] = generated_questions["questions"]
final_output["time_taken"] = end-start
if torch.device == 'cuda':
torch.cuda.empty_cache()
return final_output
def predict_shortq(self, payload):
inp = {
"input_text": payload.get("input_text"),
"max_questions": payload.get("max_questions", 4)
}
text = inp['input_text']
sentences = tokenize_sentences(text)
joiner = " "
modified_text = joiner.join(sentences)
keywords = get_keywords(
self.nlp, modified_text, inp['max_questions'], self.s2v, self.fdist, self.normalized_levenshtein, len(sentences))
keyword_sentence_mapping = get_sentences_for_keyword(
keywords, sentences)
for k in keyword_sentence_mapping.keys():
text_snippet = " ".join(keyword_sentence_mapping[k][:3])
keyword_sentence_mapping[k] = text_snippet
final_output = {}
if len(keyword_sentence_mapping.keys()) == 0:
print('ZERO')
return final_output
else:
generated_questions = generate_normal_questions(
keyword_sentence_mapping, self.device, self.tokenizer, self.model)
print(generated_questions)
final_output["statement"] = modified_text
final_output["questions"] = generated_questions["questions"]
if torch.device == 'cuda':
torch.cuda.empty_cache()
return final_output
def paraphrase(self, payload):
start = time.time()
inp = {
"input_text": payload.get("input_text"),
"max_questions": payload.get("max_questions", 3)
}
text = inp['input_text']
num = inp['max_questions']
self.sentence = text
self.text = f"paraphrase: {self.sentence} </s>"
encoding = self.tokenizer.encode_plus(
self.text, pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to(
self.device), encoding["attention_mask"].to(self.device)
beam_outputs = self.model.generate(
input_ids=input_ids,
attention_mask=attention_masks,
max_length=50,
num_beams=50,
num_return_sequences=num,
no_repeat_ngram_size=2,
early_stopping=True
)
# print ("\nOriginal Question ::")
# print (text)
# print ("\n")
# print ("Paraphrased Questions :: ")
final_outputs = []
for beam_output in beam_outputs:
sent = self.tokenizer.decode(
beam_output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
if sent.lower() != self.sentence.lower() and sent not in final_outputs:
final_outputs.append(sent)
output = {
'Question': text,
'Count': num,
'Paraphrased Questions': final_outputs,
}
for i, final_output in enumerate(final_outputs):
print(f"{i}: {final_output}")
if torch.device == 'cuda':
torch.cuda.empty_cache()
return output
class BoolQGen:
def __init__(self):
self.tokenizer = T5Tokenizer.from_pretrained('t5-base')
model = T5ForConditionalGeneration.from_pretrained(
'ramsrigouthamg/t5_boolean_questions')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# model.eval()
self.device = device
self.model = model
self.set_seed(42)
def set_seed(self, seed):
numpy.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def random_choice(self):
a = random.choice([0, 1])
return bool(a)
def predict_boolq(self, payload):
start = time.time()
inp = {
"input_text": payload.get("input_text"),
"max_questions": payload.get("max_questions", 4)
}
text = inp['input_text']
num = inp['max_questions']
sentences = tokenize_sentences(text)
joiner = " "
modified_text = joiner.join(sentences)
answer = self.random_choice()
form = f"truefalse: {modified_text} passage: {answer} </s>"
encoding = self.tokenizer.encode_plus(form, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to(
self.device), encoding["attention_mask"].to(self.device)
output = beam_search_decoding(
input_ids, attention_masks, self.model, self.tokenizer)
if torch.device == 'cuda':
torch.cuda.empty_cache()
return {'Text': text, 'Count': num, 'Boolean Questions': output}
class AnswerPredictor:
def __init__(self):
self.tokenizer = T5Tokenizer.from_pretrained('t5-base')
model = T5ForConditionalGeneration.from_pretrained('Parth/boolean')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# model.eval()
self.device = device
self.model = model
self.set_seed(42)
def set_seed(self, seed):
numpy.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def greedy_decoding(self, attn_mask, model, tokenizer):
greedy_output = model.generate(
input_ids=self, attention_mask=attn_mask, max_length=256
)
Question = tokenizer.decode(
greedy_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
return Question.strip().capitalize()
def predict_answer(self, payload):
start = time.time()
inp = {
"input_text": payload.get("input_text"),
"input_question": payload.get("input_question")
}
context = inp["input_text"]
question = inp["input_question"]
input_text = f"question: {question} <s> context: {context} </s>"
encoding = self.tokenizer.encode_plus(input_text, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to(
self.device), encoding["attention_mask"].to(self.device)
greedy_output = self.model.generate(
input_ids=input_ids, attention_mask=attention_masks, max_length=256)
Question = self.tokenizer.decode(
greedy_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
return Question.strip().capitalize()
qg = QGen()
# Define the QGen function
def generate_mcq(input_text, max_questions):
payload = {
"input_text": input_text,
"max_questions": max_questions
}
return qg.predict_mcq(payload)
# Create a Gradio interface
iface = gr.Interface(
fn=generate_mcq,
inputs=[
gr.Textbox(label="Input Text"),
gr.Number(label="Max Questions", value=1, maximum=10)
],
outputs=gr.JSON(label="Generated MCQs"),
)
# Launch the Gradio app
iface.launch()
|