Spaces:
Runtime error
Runtime error
| # Modified from OpenAI's diffusion repos | |
| # GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py | |
| # ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion | |
| # IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py | |
| import math | |
| import numpy as np | |
| import torch as th | |
| import enum | |
| from .diffusion_utils import discretized_gaussian_log_likelihood, normal_kl | |
| def mean_flat(tensor): | |
| """ | |
| Take the mean over all non-batch dimensions. | |
| """ | |
| return tensor.mean(dim=list(range(1, len(tensor.shape)))) | |
| class ModelMeanType(enum.Enum): | |
| """ | |
| Which type of output the model predicts. | |
| """ | |
| PREVIOUS_X = enum.auto() # the model predicts x_{t-1} | |
| START_X = enum.auto() # the model predicts x_0 | |
| EPSILON = enum.auto() # the model predicts epsilon | |
| class ModelVarType(enum.Enum): | |
| """ | |
| What is used as the model's output variance. | |
| The LEARNED_RANGE option has been added to allow the model to predict | |
| values between FIXED_SMALL and FIXED_LARGE, making its job easier. | |
| """ | |
| LEARNED = enum.auto() | |
| FIXED_SMALL = enum.auto() | |
| FIXED_LARGE = enum.auto() | |
| LEARNED_RANGE = enum.auto() | |
| class LossType(enum.Enum): | |
| MSE = enum.auto() # use raw MSE loss (and KL when learning variances) | |
| RESCALED_MSE = ( | |
| enum.auto() | |
| ) # use raw MSE loss (with RESCALED_KL when learning variances) | |
| KL = enum.auto() # use the variational lower-bound | |
| RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB | |
| def is_vb(self): | |
| return self == LossType.KL or self == LossType.RESCALED_KL | |
| def _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, warmup_frac): | |
| betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64) | |
| warmup_time = int(num_diffusion_timesteps * warmup_frac) | |
| betas[:warmup_time] = np.linspace(beta_start, beta_end, warmup_time, dtype=np.float64) | |
| return betas | |
| def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_timesteps): | |
| """ | |
| This is the deprecated API for creating beta schedules. | |
| See get_named_beta_schedule() for the new library of schedules. | |
| """ | |
| if beta_schedule == "quad": | |
| betas = ( | |
| np.linspace( | |
| beta_start ** 0.5, | |
| beta_end ** 0.5, | |
| num_diffusion_timesteps, | |
| dtype=np.float64, | |
| ) | |
| ** 2 | |
| ) | |
| elif beta_schedule == "linear": | |
| betas = np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64) | |
| elif beta_schedule == "warmup10": | |
| betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.1) | |
| elif beta_schedule == "warmup50": | |
| betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.5) | |
| elif beta_schedule == "const": | |
| betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64) | |
| elif beta_schedule == "jsd": # 1/T, 1/(T-1), 1/(T-2), ..., 1 | |
| betas = 1.0 / np.linspace( | |
| num_diffusion_timesteps, 1, num_diffusion_timesteps, dtype=np.float64 | |
| ) | |
| else: | |
| raise NotImplementedError(beta_schedule) | |
| assert betas.shape == (num_diffusion_timesteps,) | |
| return betas | |
| def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): | |
| """ | |
| Get a pre-defined beta schedule for the given name. | |
| The beta schedule library consists of beta schedules which remain similar | |
| in the limit of num_diffusion_timesteps. | |
| Beta schedules may be added, but should not be removed or changed once | |
| they are committed to maintain backwards compatibility. | |
| """ | |
| if schedule_name == "linear": | |
| # Linear schedule from Ho et al, extended to work for any number of | |
| # diffusion steps. | |
| scale = 1000 / num_diffusion_timesteps | |
| return get_beta_schedule( | |
| "linear", | |
| beta_start=scale * 0.0001, | |
| beta_end=scale * 0.02, | |
| # diffuser stable diffusion | |
| # beta_start=scale * 0.00085, | |
| # beta_end=scale * 0.012, | |
| num_diffusion_timesteps=num_diffusion_timesteps, | |
| ) | |
| elif schedule_name == "squaredcos_cap_v2": | |
| return betas_for_alpha_bar( | |
| num_diffusion_timesteps, | |
| lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, | |
| ) | |
| else: | |
| raise NotImplementedError(f"unknown beta schedule: {schedule_name}") | |
| def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): | |
| """ | |
| Create a beta schedule that discretizes the given alpha_t_bar function, | |
| which defines the cumulative product of (1-beta) over time from t = [0,1]. | |
| :param num_diffusion_timesteps: the number of betas to produce. | |
| :param alpha_bar: a lambda that takes an argument t from 0 to 1 and | |
| produces the cumulative product of (1-beta) up to that | |
| part of the diffusion process. | |
| :param max_beta: the maximum beta to use; use values lower than 1 to | |
| prevent singularities. | |
| """ | |
| betas = [] | |
| for i in range(num_diffusion_timesteps): | |
| t1 = i / num_diffusion_timesteps | |
| t2 = (i + 1) / num_diffusion_timesteps | |
| betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
| return np.array(betas) | |
| class GaussianDiffusion: | |
| """ | |
| Utilities for training and sampling diffusion models. | |
| Original ported from this codebase: | |
| https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 | |
| :param betas: a 1-D numpy array of betas for each diffusion timestep, | |
| starting at T and going to 1. | |
| """ | |
| def __init__( | |
| self, | |
| *, | |
| betas, | |
| model_mean_type, | |
| model_var_type, | |
| loss_type | |
| ): | |
| self.model_mean_type = model_mean_type | |
| self.model_var_type = model_var_type | |
| self.loss_type = loss_type | |
| # Use float64 for accuracy. | |
| betas = np.array(betas, dtype=np.float64) | |
| self.betas = betas | |
| assert len(betas.shape) == 1, "betas must be 1-D" | |
| assert (betas > 0).all() and (betas <= 1).all() | |
| self.num_timesteps = int(betas.shape[0]) | |
| alphas = 1.0 - betas | |
| self.alphas_cumprod = np.cumprod(alphas, axis=0) | |
| self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) | |
| self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) | |
| assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) | |
| # calculations for diffusion q(x_t | x_{t-1}) and others | |
| self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) | |
| self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) | |
| self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) | |
| self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) | |
| self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) | |
| # calculations for posterior q(x_{t-1} | x_t, x_0) | |
| self.posterior_variance = ( | |
| betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
| ) | |
| # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain | |
| self.posterior_log_variance_clipped = np.log( | |
| np.append(self.posterior_variance[1], self.posterior_variance[1:]) | |
| ) if len(self.posterior_variance) > 1 else np.array([]) | |
| self.posterior_mean_coef1 = ( | |
| betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
| ) | |
| self.posterior_mean_coef2 = ( | |
| (1.0 - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - self.alphas_cumprod) | |
| ) | |
| def q_mean_variance(self, x_start, t): | |
| """ | |
| Get the distribution q(x_t | x_0). | |
| :param x_start: the [N x C x ...] tensor of noiseless inputs. | |
| :param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
| :return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
| """ | |
| mean = _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
| variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) | |
| log_variance = _extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) | |
| return mean, variance, log_variance | |
| def q_sample(self, x_start, t, noise=None): | |
| """ | |
| Diffuse the data for a given number of diffusion steps. | |
| In other words, sample from q(x_t | x_0). | |
| :param x_start: the initial data batch. | |
| :param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
| :param noise: if specified, the split-out normal noise. | |
| :return: A noisy version of x_start. | |
| """ | |
| if noise is None: | |
| noise = th.randn_like(x_start) | |
| assert noise.shape == x_start.shape | |
| return ( | |
| _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
| + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise | |
| ) | |
| def q_posterior_mean_variance(self, x_start, x_t, t): | |
| """ | |
| Compute the mean and variance of the diffusion posterior: | |
| q(x_{t-1} | x_t, x_0) | |
| """ | |
| assert x_start.shape == x_t.shape | |
| posterior_mean = ( | |
| _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start | |
| + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
| ) | |
| posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) | |
| posterior_log_variance_clipped = _extract_into_tensor( | |
| self.posterior_log_variance_clipped, t, x_t.shape | |
| ) | |
| assert ( | |
| posterior_mean.shape[0] | |
| == posterior_variance.shape[0] | |
| == posterior_log_variance_clipped.shape[0] | |
| == x_start.shape[0] | |
| ) | |
| return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
| def p_mean_variance(self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None, | |
| mask=None, x_start=None, use_concat=False): | |
| """ | |
| Apply the model to get p(x_{t-1} | x_t), as well as a prediction of | |
| the initial x, x_0. | |
| :param model: the model, which takes a signal and a batch of timesteps | |
| as input. | |
| :param x: the [N x C x ...] tensor at time t. | |
| :param t: a 1-D Tensor of timesteps. | |
| :param clip_denoised: if True, clip the denoised signal into [-1, 1]. | |
| :param denoised_fn: if not None, a function which applies to the | |
| x_start prediction before it is used to sample. Applies before | |
| clip_denoised. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :return: a dict with the following keys: | |
| - 'mean': the model mean output. | |
| - 'variance': the model variance output. | |
| - 'log_variance': the log of 'variance'. | |
| - 'pred_xstart': the prediction for x_0. | |
| """ | |
| if model_kwargs is None: | |
| model_kwargs = {} | |
| B, F, C = x.shape[:3] | |
| assert t.shape == (B,) | |
| if use_concat: | |
| model_output = model(th.concat([x, mask, x_start], dim=1), t, **model_kwargs) | |
| else: | |
| model_output = model(x, t, **model_kwargs) | |
| try: | |
| model_output = model_output.sample # for tav unet | |
| except: | |
| pass | |
| # model_output = model(x, t, **model_kwargs) | |
| if isinstance(model_output, tuple): | |
| model_output, extra = model_output | |
| else: | |
| extra = None | |
| if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]: | |
| assert model_output.shape == (B, F, C * 2, *x.shape[3:]) | |
| model_output, model_var_values = th.split(model_output, C, dim=2) | |
| min_log = _extract_into_tensor(self.posterior_log_variance_clipped, t, x.shape) | |
| max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) | |
| # The model_var_values is [-1, 1] for [min_var, max_var]. | |
| frac = (model_var_values + 1) / 2 | |
| model_log_variance = frac * max_log + (1 - frac) * min_log | |
| model_variance = th.exp(model_log_variance) | |
| else: | |
| model_variance, model_log_variance = { | |
| # for fixedlarge, we set the initial (log-)variance like so | |
| # to get a better decoder log likelihood. | |
| ModelVarType.FIXED_LARGE: ( | |
| np.append(self.posterior_variance[1], self.betas[1:]), | |
| np.log(np.append(self.posterior_variance[1], self.betas[1:])), | |
| ), | |
| ModelVarType.FIXED_SMALL: ( | |
| self.posterior_variance, | |
| self.posterior_log_variance_clipped, | |
| ), | |
| }[self.model_var_type] | |
| model_variance = _extract_into_tensor(model_variance, t, x.shape) | |
| model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape) | |
| def process_xstart(x): | |
| if denoised_fn is not None: | |
| x = denoised_fn(x) | |
| if clip_denoised: | |
| return x.clamp(-1, 1) | |
| return x | |
| if self.model_mean_type == ModelMeanType.START_X: | |
| pred_xstart = process_xstart(model_output) | |
| else: | |
| pred_xstart = process_xstart( | |
| self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output) | |
| ) | |
| model_mean, _, _ = self.q_posterior_mean_variance(x_start=pred_xstart, x_t=x, t=t) | |
| assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape | |
| return { | |
| "mean": model_mean, | |
| "variance": model_variance, | |
| "log_variance": model_log_variance, | |
| "pred_xstart": pred_xstart, | |
| "extra": extra, | |
| } | |
| def _predict_xstart_from_eps(self, x_t, t, eps): | |
| assert x_t.shape == eps.shape | |
| return ( | |
| _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t | |
| - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps | |
| ) | |
| def _predict_eps_from_xstart(self, x_t, t, pred_xstart): | |
| return ( | |
| _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart | |
| ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
| def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None): | |
| """ | |
| Compute the mean for the previous step, given a function cond_fn that | |
| computes the gradient of a conditional log probability with respect to | |
| x. In particular, cond_fn computes grad(log(p(y|x))), and we want to | |
| condition on y. | |
| This uses the conditioning strategy from Sohl-Dickstein et al. (2015). | |
| """ | |
| gradient = cond_fn(x, t, **model_kwargs) | |
| new_mean = p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float() | |
| return new_mean | |
| def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None): | |
| """ | |
| Compute what the p_mean_variance output would have been, should the | |
| model's score function be conditioned by cond_fn. | |
| See condition_mean() for details on cond_fn. | |
| Unlike condition_mean(), this instead uses the conditioning strategy | |
| from Song et al (2020). | |
| """ | |
| alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) | |
| eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) | |
| eps = eps - (1 - alpha_bar).sqrt() * cond_fn(x, t, **model_kwargs) | |
| out = p_mean_var.copy() | |
| out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) | |
| out["mean"], _, _ = self.q_posterior_mean_variance(x_start=out["pred_xstart"], x_t=x, t=t) | |
| return out | |
| def p_sample( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| mask=None, | |
| x_start=None, | |
| use_concat=False | |
| ): | |
| """ | |
| Sample x_{t-1} from the model at the given timestep. | |
| :param model: the model to sample from. | |
| :param x: the current tensor at x_{t-1}. | |
| :param t: the value of t, starting at 0 for the first diffusion step. | |
| :param clip_denoised: if True, clip the x_start prediction to [-1, 1]. | |
| :param denoised_fn: if not None, a function which applies to the | |
| x_start prediction before it is used to sample. | |
| :param cond_fn: if not None, this is a gradient function that acts | |
| similarly to the model. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :return: a dict containing the following keys: | |
| - 'sample': a random sample from the model. | |
| - 'pred_xstart': a prediction of x_0. | |
| """ | |
| out = self.p_mean_variance( | |
| model, | |
| x, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| mask=mask, | |
| x_start=x_start, | |
| use_concat=use_concat | |
| ) | |
| noise = th.randn_like(x) | |
| nonzero_mask = ( | |
| (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) | |
| ) # no noise when t == 0 | |
| if cond_fn is not None: | |
| out["mean"] = self.condition_mean(cond_fn, out, x, t, model_kwargs=model_kwargs) | |
| sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise | |
| return {"sample": sample, "pred_xstart": out["pred_xstart"]} | |
| def p_sample_loop( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| mask=None, | |
| x_start=None, | |
| use_concat=False, | |
| ): | |
| """ | |
| Generate samples from the model. | |
| :param model: the model module. | |
| :param shape: the shape of the samples, (N, C, H, W). | |
| :param noise: if specified, the noise from the encoder to sample. | |
| Should be of the same shape as `shape`. | |
| :param clip_denoised: if True, clip x_start predictions to [-1, 1]. | |
| :param denoised_fn: if not None, a function which applies to the | |
| x_start prediction before it is used to sample. | |
| :param cond_fn: if not None, this is a gradient function that acts | |
| similarly to the model. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :param device: if specified, the device to create the samples on. | |
| If not specified, use a model parameter's device. | |
| :param progress: if True, show a tqdm progress bar. | |
| :return: a non-differentiable batch of samples. | |
| """ | |
| final = None | |
| for sample in self.p_sample_loop_progressive( | |
| model, | |
| shape, | |
| noise=noise, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=model_kwargs, | |
| device=device, | |
| progress=progress, | |
| mask=mask, | |
| x_start=x_start, | |
| use_concat=use_concat | |
| ): | |
| final = sample | |
| return final["sample"] | |
| def p_sample_loop_progressive( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| mask=None, | |
| x_start=None, | |
| use_concat=False | |
| ): | |
| """ | |
| Generate samples from the model and yield intermediate samples from | |
| each timestep of diffusion. | |
| Arguments are the same as p_sample_loop(). | |
| Returns a generator over dicts, where each dict is the return value of | |
| p_sample(). | |
| """ | |
| if device is None: | |
| device = next(model.parameters()).device | |
| assert isinstance(shape, (tuple, list)) | |
| if noise is not None: | |
| img = noise | |
| else: | |
| img = th.randn(*shape, device=device) | |
| indices = list(range(self.num_timesteps))[::-1] | |
| if progress: | |
| # Lazy import so that we don't depend on tqdm. | |
| from tqdm.auto import tqdm | |
| indices = tqdm(indices) | |
| for i in indices: | |
| t = th.tensor([i] * shape[0], device=device) | |
| with th.no_grad(): | |
| out = self.p_sample( | |
| model, | |
| img, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=model_kwargs, | |
| mask=mask, | |
| x_start=x_start, | |
| use_concat=use_concat | |
| ) | |
| yield out | |
| img = out["sample"] | |
| def ddim_sample( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| eta=0.0, | |
| mask=None, | |
| x_start=None, | |
| use_concat=False | |
| ): | |
| """ | |
| Sample x_{t-1} from the model using DDIM. | |
| Same usage as p_sample(). | |
| """ | |
| out = self.p_mean_variance( | |
| model, | |
| x, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| mask=mask, | |
| x_start=x_start, | |
| use_concat=use_concat | |
| ) | |
| if cond_fn is not None: | |
| out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs) | |
| # Usually our model outputs epsilon, but we re-derive it | |
| # in case we used x_start or x_prev prediction. | |
| eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) | |
| alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) | |
| alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) | |
| sigma = ( | |
| eta | |
| * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) | |
| * th.sqrt(1 - alpha_bar / alpha_bar_prev) | |
| ) | |
| # Equation 12. | |
| noise = th.randn_like(x) | |
| mean_pred = ( | |
| out["pred_xstart"] * th.sqrt(alpha_bar_prev) | |
| + th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps | |
| ) | |
| nonzero_mask = ( | |
| (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) | |
| ) # no noise when t == 0 | |
| sample = mean_pred + nonzero_mask * sigma * noise | |
| return {"sample": sample, "pred_xstart": out["pred_xstart"]} | |
| def ddim_reverse_sample( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| eta=0.0, | |
| ): | |
| """ | |
| Sample x_{t+1} from the model using DDIM reverse ODE. | |
| """ | |
| assert eta == 0.0, "Reverse ODE only for deterministic path" | |
| out = self.p_mean_variance( | |
| model, | |
| x, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| if cond_fn is not None: | |
| out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs) | |
| # Usually our model outputs epsilon, but we re-derive it | |
| # in case we used x_start or x_prev prediction. | |
| eps = ( | |
| _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x | |
| - out["pred_xstart"] | |
| ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape) | |
| alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape) | |
| # Equation 12. reversed | |
| mean_pred = out["pred_xstart"] * th.sqrt(alpha_bar_next) + th.sqrt(1 - alpha_bar_next) * eps | |
| return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} | |
| def ddim_sample_loop( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| eta=0.0, | |
| mask=None, | |
| x_start=None, | |
| use_concat=False | |
| ): | |
| """ | |
| Generate samples from the model using DDIM. | |
| Same usage as p_sample_loop(). | |
| """ | |
| final = None | |
| for sample in self.ddim_sample_loop_progressive( | |
| model, | |
| shape, | |
| noise=noise, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=model_kwargs, | |
| device=device, | |
| progress=progress, | |
| eta=eta, | |
| mask=mask, | |
| x_start=x_start, | |
| use_concat=use_concat | |
| ): | |
| final = sample | |
| return final["sample"] | |
| def ddim_sample_loop_progressive( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| eta=0.0, | |
| mask=None, | |
| x_start=None, | |
| use_concat=False | |
| ): | |
| """ | |
| Use DDIM to sample from the model and yield intermediate samples from | |
| each timestep of DDIM. | |
| Same usage as p_sample_loop_progressive(). | |
| """ | |
| if device is None: | |
| device = next(model.parameters()).device | |
| assert isinstance(shape, (tuple, list)) | |
| if noise is not None: | |
| img = noise | |
| else: | |
| img = th.randn(*shape, device=device) | |
| indices = list(range(self.num_timesteps))[::-1] | |
| if progress: | |
| # Lazy import so that we don't depend on tqdm. | |
| from tqdm.auto import tqdm | |
| indices = tqdm(indices) | |
| for i in indices: | |
| t = th.tensor([i] * shape[0], device=device) | |
| with th.no_grad(): | |
| out = self.ddim_sample( | |
| model, | |
| img, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=model_kwargs, | |
| eta=eta, | |
| mask=mask, | |
| x_start=x_start, | |
| use_concat=use_concat | |
| ) | |
| yield out | |
| img = out["sample"] | |
| def _vb_terms_bpd( | |
| self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None | |
| ): | |
| """ | |
| Get a term for the variational lower-bound. | |
| The resulting units are bits (rather than nats, as one might expect). | |
| This allows for comparison to other papers. | |
| :return: a dict with the following keys: | |
| - 'output': a shape [N] tensor of NLLs or KLs. | |
| - 'pred_xstart': the x_0 predictions. | |
| """ | |
| true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance( | |
| x_start=x_start, x_t=x_t, t=t | |
| ) | |
| out = self.p_mean_variance( | |
| model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs | |
| ) | |
| kl = normal_kl( | |
| true_mean, true_log_variance_clipped, out["mean"], out["log_variance"] | |
| ) | |
| kl = mean_flat(kl) / np.log(2.0) | |
| decoder_nll = -discretized_gaussian_log_likelihood( | |
| x_start, means=out["mean"], log_scales=0.5 * out["log_variance"] | |
| ) | |
| assert decoder_nll.shape == x_start.shape | |
| decoder_nll = mean_flat(decoder_nll) / np.log(2.0) | |
| # At the first timestep return the decoder NLL, | |
| # otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t)) | |
| output = th.where((t == 0), decoder_nll, kl) | |
| return {"output": output, "pred_xstart": out["pred_xstart"]} | |
| def training_losses(self, model, x_start, t, model_kwargs=None, noise=None, use_mask=False): | |
| """ | |
| Compute training losses for a single timestep. | |
| :param model: the model to evaluate loss on. | |
| :param x_start: the [N x C x ...] tensor of inputs. | |
| :param t: a batch of timestep indices. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :param noise: if specified, the specific Gaussian noise to try to remove. | |
| :return: a dict with the key "loss" containing a tensor of shape [N]. | |
| Some mean or variance settings may also have other keys. | |
| """ | |
| if model_kwargs is None: | |
| model_kwargs = {} | |
| if noise is None: | |
| noise = th.randn_like(x_start) | |
| x_t = self.q_sample(x_start, t, noise=noise) | |
| if use_mask: | |
| x_t = th.cat([x_t[:, :4], x_start[:, 4:]], dim=1) | |
| terms = {} | |
| if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL: | |
| terms["loss"] = self._vb_terms_bpd( | |
| model=model, | |
| x_start=x_start, | |
| x_t=x_t, | |
| t=t, | |
| clip_denoised=False, | |
| model_kwargs=model_kwargs, | |
| )["output"] | |
| if self.loss_type == LossType.RESCALED_KL: | |
| terms["loss"] *= self.num_timesteps | |
| elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: | |
| model_output = model(x_t, t, **model_kwargs) | |
| try: | |
| # model_output = model(x_t, t, **model_kwargs).sample | |
| model_output = model_output.sample # for tav unet | |
| except: | |
| pass | |
| # model_output = model(x_t, t, **model_kwargs) | |
| if self.model_var_type in [ | |
| ModelVarType.LEARNED, | |
| ModelVarType.LEARNED_RANGE, | |
| ]: | |
| B, F, C = x_t.shape[:3] | |
| assert model_output.shape == (B, F, C * 2, *x_t.shape[3:]) | |
| model_output, model_var_values = th.split(model_output, C, dim=2) | |
| # Learn the variance using the variational bound, but don't let | |
| # it affect our mean prediction. | |
| frozen_out = th.cat([model_output.detach(), model_var_values], dim=2) | |
| terms["vb"] = self._vb_terms_bpd( | |
| model=lambda *args, r=frozen_out: r, | |
| x_start=x_start, | |
| x_t=x_t, | |
| t=t, | |
| clip_denoised=False, | |
| )["output"] | |
| if self.loss_type == LossType.RESCALED_MSE: | |
| # Divide by 1000 for equivalence with initial implementation. | |
| # Without a factor of 1/1000, the VB term hurts the MSE term. | |
| terms["vb"] *= self.num_timesteps / 1000.0 | |
| target = { | |
| ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance( | |
| x_start=x_start, x_t=x_t, t=t | |
| )[0], | |
| ModelMeanType.START_X: x_start, | |
| ModelMeanType.EPSILON: noise, | |
| }[self.model_mean_type] | |
| # assert model_output.shape == target.shape == x_start.shape | |
| if use_mask: | |
| terms["mse"] = mean_flat((target[:,:4] - model_output) ** 2) | |
| else: | |
| terms["mse"] = mean_flat((target - model_output) ** 2) | |
| if "vb" in terms: | |
| terms["loss"] = terms["mse"] + terms["vb"] | |
| else: | |
| terms["loss"] = terms["mse"] | |
| else: | |
| raise NotImplementedError(self.loss_type) | |
| return terms | |
| def _prior_bpd(self, x_start): | |
| """ | |
| Get the prior KL term for the variational lower-bound, measured in | |
| bits-per-dim. | |
| This term can't be optimized, as it only depends on the encoder. | |
| :param x_start: the [N x C x ...] tensor of inputs. | |
| :return: a batch of [N] KL values (in bits), one per batch element. | |
| """ | |
| batch_size = x_start.shape[0] | |
| t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) | |
| qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) | |
| kl_prior = normal_kl( | |
| mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0 | |
| ) | |
| return mean_flat(kl_prior) / np.log(2.0) | |
| def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None): | |
| """ | |
| Compute the entire variational lower-bound, measured in bits-per-dim, | |
| as well as other related quantities. | |
| :param model: the model to evaluate loss on. | |
| :param x_start: the [N x C x ...] tensor of inputs. | |
| :param clip_denoised: if True, clip denoised samples. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :return: a dict containing the following keys: | |
| - total_bpd: the total variational lower-bound, per batch element. | |
| - prior_bpd: the prior term in the lower-bound. | |
| - vb: an [N x T] tensor of terms in the lower-bound. | |
| - xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep. | |
| - mse: an [N x T] tensor of epsilon MSEs for each timestep. | |
| """ | |
| device = x_start.device | |
| batch_size = x_start.shape[0] | |
| vb = [] | |
| xstart_mse = [] | |
| mse = [] | |
| for t in list(range(self.num_timesteps))[::-1]: | |
| t_batch = th.tensor([t] * batch_size, device=device) | |
| noise = th.randn_like(x_start) | |
| x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise) | |
| # Calculate VLB term at the current timestep | |
| with th.no_grad(): | |
| out = self._vb_terms_bpd( | |
| model, | |
| x_start=x_start, | |
| x_t=x_t, | |
| t=t_batch, | |
| clip_denoised=clip_denoised, | |
| model_kwargs=model_kwargs, | |
| ) | |
| vb.append(out["output"]) | |
| xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2)) | |
| eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"]) | |
| mse.append(mean_flat((eps - noise) ** 2)) | |
| vb = th.stack(vb, dim=1) | |
| xstart_mse = th.stack(xstart_mse, dim=1) | |
| mse = th.stack(mse, dim=1) | |
| prior_bpd = self._prior_bpd(x_start) | |
| total_bpd = vb.sum(dim=1) + prior_bpd | |
| return { | |
| "total_bpd": total_bpd, | |
| "prior_bpd": prior_bpd, | |
| "vb": vb, | |
| "xstart_mse": xstart_mse, | |
| "mse": mse, | |
| } | |
| def _extract_into_tensor(arr, timesteps, broadcast_shape): | |
| """ | |
| Extract values from a 1-D numpy array for a batch of indices. | |
| :param arr: the 1-D numpy array. | |
| :param timesteps: a tensor of indices into the array to extract. | |
| :param broadcast_shape: a larger shape of K dimensions with the batch | |
| dimension equal to the length of timesteps. | |
| :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. | |
| """ | |
| res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() | |
| while len(res.shape) < len(broadcast_shape): | |
| res = res[..., None] | |
| return res + th.zeros(broadcast_shape, device=timesteps.device) | |